導航:首頁 > 污水處理 > 自貢榮縣光學污水處理

自貢榮縣光學污水處理

發布時間:2021-04-22 21:25:02

污水處理中的tss是什麼

TSS就是總懸浮固體,TSS是英語(Total Suspended Solid或者Total Suspended Substance)的縮寫,即水質中的總懸浮物。

它是指水樣通過孔徑為0.45μm的濾膜截留在濾膜上並於103~105℃ 烘乾至恆重的固體物質,是衡量水體水質污染程度的重要指標之一,計量單位是mg/L。

(1)自貢榮縣光學污水處理擴展閱讀:

監測總固體懸浮物:影像數據選擇

廣義的影像數據分為光學影像和雷達影像,光學數據又分為多光譜影像、多時相影像、高光譜影像等。目前國內外對懸浮固體的遙感研究大多利用光學影像,其中大多影像數據都被選作懸浮固體的反演數據。

常見的多時相數據被廣泛的應用於不同時間尺度的懸浮固體空間分布分析上。是搭載於和衛星上的一個重要的感測器,其空間解析度最大可達到,一天可過境次,實時監測能力很強。

王繁等人曾利用資料反演杭州灣表層懸浮物濃度並對其短期變異進行研究。數據屬於中等解析度影像,相比於數據解析度有很大的提高。

⑵ 污水處理

【污水處理簡介】
按污水來源分類,污水處理一般分為生產污水處理和生活污水處理。生產污水包括工業污水、農業污水以及醫療污水等,而生活污水就是日常生活產生的污水,是指各種形式的無機物和有機物的復雜混合物,包括:①漂浮和懸浮的大小固體顆粒;②膠狀和凝膠狀擴散物;③純溶液。
按污水的性質來分,水的污染有兩類:一類是自然污染;另一類是人為污染。當前對水體危害較大的是人為污染。水污染可根據污染雜質的不同而主要分為化學性污染、物理性污染和生物性污染三大類。污染物主要有::(1)未經處理而排放的工業廢水;(2)未經處理而排放的生活污水;(3)大量使用化肥、農葯、除草劑的農田污水;(4)堆放在河邊的工業廢棄物和生活垃圾;(5)水土流失;(6)礦山污水。
污水處理[1]被廣泛應用於建築、農業,交通、能源、石化、環保、城市景觀、醫療、餐飲等各個領域,也越來越多地走進尋常百姓的日常生活。
[編輯本段]【處理程度劃分】
現代污水處理技術,按處理程度劃分,可分為一級、二級和三級處理。
一級處理,
主要去除污水中呈懸浮狀態的固體污染物質,物理處理法大部分只能完成一級處理的要求。經過一級處理的污水,BOD一般可去除30%左右,達不到排放標准。一級處理屬於二級處理的預處理。
二級處理,
主要去除污水中呈膠體和溶解狀態的有機污染物質(BOD,COD物質),去除率可達90%以上,使有機污染物達到排放標准。
三級處理,
進一步處理難降解的有機物、氮和磷等能夠導致水體富營養化的可溶性無機物等。主要方法有生物脫氮除磷法,混凝沉澱法,砂率法,活性炭吸附法,離子交換法和電滲分析法等。
整個過程為通過粗格柵的原污水經過污水提升泵提升後,經過格柵或者篩率器,之後進入沉砂池,經過砂水分離的污水進入初次沉澱池,以上為一級處理(即物理處理),初沉池的出水進入生物處理設備,有活性污泥法和生物膜法,(其中活性污泥法的反應器有曝氣池,氧化溝等,生物膜法包括生物濾池、生物轉盤、生物接觸氧化法和生物流化床),生物處理設備的出水進入二次沉澱池,二沉池的出水經過消毒排放或者進入三級處理,一級處理結束到此為二級處理,三級處理包括生物脫氮除磷法,混凝沉澱法,砂濾法,活性炭吸附法,離子交換法和電滲析法。二沉池的污泥一部分迴流至初次沉澱池或者生物處理設備,一部分進入污泥濃縮池,之後進入污泥消化池,經過脫水和乾燥設備後,污泥被最後利用。

⑶ 污水處理站怎樣處理含氰廢水

處理含氰廢水的方法
除了氯氧化法、二氧化硫-空氣氧化法、過氧化氫氧化法、酸化回收法、萃取法已獨立或幾種方法聯合使用於黃金氰化廠外,生物化學法、離子交換法、吸附法、自然凈化法在國內外也有工業應用,由於報道較少,工業實踐時間短,資料數據有限,本章僅對這些方法的原理、特點、處理效果進行簡要介紹。
一、生物化學法
1、生物法原理
生物法處理含氰廢水分兩個階段,第一階段是革蘭氏桿菌以氰化物、硫氰化物中的碳、氮為食物源,將氰化物和硫氰化物分解成碳酸鹽和氨:
微生物
Mn(CN)n(n-m)-+4H2O+O2─→Me-生物膜+2HCO3-+2NH3
對金屬氰絡物的分解順序是Zn、Ni、Cu、Fe對硫氰化物的分解與此類似,而且迅速,最佳pH值6.7~7.2。
細菌
SCN-+2.5O2+2H2O→SO42-+HCO3-+NH3
第二階段為硝化階段,利用嗜氧自養細菌把NH3分解:
細菌
NH3+1.5O2→NO2-+2H++H2O
細菌
NO2-+0.5O2→NO3-
氰化物和硫氰化物經過以上兩個階段,分解成無毒物以達到廢水處理目的。
生物化學法根據使用的設備和工藝不可又分為活性污泥法、生物過濾法、生物接觸法和生物流化床法等等,國內外利用生物化學法處理焦化、化肥廠含氰廢水的報導較多。
據報道,從1984年開始,美國霍姆斯特克(Homestake)金礦用生物法處理氰化廠廢水,英國將一種菌種固化後用於處理2500ppm的廢水,出水CN-可降低到1ppm,是今後發展的方向。
微生物法進入工業化階段並非易事,自然界的菌種遠不能適應每升數毫克濃度的氰化物廢水,因此必須對菌種進行馴化,使其逐步適應,生物化學法工藝較長,包括菌種的培養,加入營養物等,其處理時間相對較長,操作條件嚴格。如溫度、廢水組成等必須嚴格控制在一定范圍內,否則,微生物的代謝作用就會受到抑制甚至死亡。設備復雜、投資很大,因此在黃金氰化廠它的應用受到了限制。但生物化學法能分解硫氰化物,使重金屬形成污泥從廢水中去除,出水水質很好,故對於排水水質要求很高、地處溫帶的氰化廠,使用生物法比較合適。
2、生物法的應用情況
國外某金礦採用生物化學法處理氰化廠含氰廢水。首先,含氰廢水通過其它廢水稀釋,氰化物含量降低到生化法要求的濃度(CN-<10.0mg/L)、溫度(10℃~18℃,必要時設空調),pH值(7~8.5)然後加入營養基(磷酸鹽和碳酸鈉),廢水的處理分兩段進行,兩段均採用Φ3.6×6m的生物轉盤,30%浸入廢水中以使細菌與廢水和空氣接觸,第一段用微生物把氰化物和硫氰化物氧化成二氧化碳、硫酸鹽和氨,同時重金屬被細菌吸附而從廢水中除去,第二段包括氨的細菌硝化作用,首先轉化為亞硝酸鹽,然後被轉化為硝酸鹽,第一段採用事先經過馴化的,微生物從工藝水中以兩種適應較高的氰化物和硫氰化物的濃度。第二段採用分離出來的普通的亞硝化細菌和硝化細菌,被附著在轉盤上的細菌的浮生物膜吸附重金屬並隨生產膜脫落而被除去,通過加入絮凝劑使液固兩相分開,清液達標排放,污泥排放尾礦庫。該處理裝置處理廢水(包括其它廢水)800m3/h,每個生物轉盤直徑3.6m,長6m。由波紋狀塑料板組成。該處理廠總投資約1000萬美元,其處理指標見表10-1。
表10-1 生物化學法處理含氰廢水效果
廢水名稱 廢水各組份含量(mg/L)
總CN- CN- SCN- Cu
處理前 3.67 2.30 61.5 0.56
處理後 0.33 0.05 0.50 0.04
3、生物化學法的特點
(一)優點
生物法處理的廢水,水質比較好,CN-、SCN-、CNO-、NH3、重金屬包括Fe(CN)64-均有較高的去除率,排水無毒,尤其是能徹底去除SCN-,是二氧化硫-空氣法、過氧化氫氧化法、酸化回收法等無法做到的。
(二)缺點
1)適應性差,僅能處理極低濃度而且濃度波動小的含氰廢水,故氰化廠廢水應稀釋數百倍才能處理,這就擴大了處理裝置的處理規模,大大增加了基建投資。
2)溫度范圍窄,寒冷地方必須有溫室才能使用。
3)只能處理澄清水,不能處理礦漿。
二、離子交換法
1950年南非開始研究使用離子交換法處理黃金行業含氰廢水。1960年蘇聯也開始研究,並在傑良諾夫斯克浮選廠處理含氰廢水並回收氰化物和金。
1970年工業裝置投入運行,取得了較好的效果,1985年加拿大的威蒂克(Witteck)科技開發公司開發了一種處理含氰廢水的離子交換法,不久又成立了一個專門推廣該技術的公司,叫Cy-tech公司,離子交換法處理進行研究,取得了許多試驗數據,並已達到了工業應用的水平。
1、離子交換法的基本原理
離子交換法就是用離子交換樹脂吸附廢水中以陰離子形式存在的各種氰化物:
R2SO4+2CN-→2R(CN)2+SO42-
R2SO4+Zn(CN)42-→R2Zn(CN)4+SO42-
R2SO4+Cu(CN)32-→R2Cu(CN)3+SO42-
2R2SO4+Fe(CN)64-→R4Fe(CN)6+2SO42-
Pb(CN)42-、Ni(CN)42-、Au(CN)2-、Ag(CN) 2-、Cu(CN)2-等的吸附與上述類似,硫氰化物陰離子在樹脂上的吸附力比CN-更大,更易被吸附在樹脂上。
R2SO4+2SCN-→2RSCN
在強鹼性陰離子交換樹脂上,黃金氰化廠廢水中主要的幾種陰離子的吸附能力如下:
Zn(CN)42->Cu(CN)32->SCN->CN->SO42-
樹脂飽和時,如果繼續處理廢水,新進入樹脂層的Zn(CN)42-就會將其它離子從樹脂上排擠下來,使它們重新進入溶液,但即使繼續進行這一過程,樹脂上已吸附的各種離子也不會全部被排擠下來,各種離子在樹脂上的吸附量根據各種離子在樹脂上的吸附能力以及在廢水中的濃度不同有一部分配比。對於強鹼性樹脂來說,這種現象十分明顯,具體表現在流出液的組成隨處理量的變化特性曲線上。各組分當被吸附力強於它的組分從樹脂上排擠下來時,其流出液濃度會出現峰值。
不同的弱鹼樹脂具有不同的吸附特性。因此,對不同離子的吸附力也有很大差別,研究用離子交換法處理含氰廢水的一個重要任務就是去選擇甚至專門合成適用於我們要處理的廢水特點的樹脂,否則樹脂處理廢水的效果或洗脫問題將難以滿足我們的需要。難以工業化應用。
2、離子交換法存在的問題及解決途徑
離子交換法存在的問題主要是樹脂的中毒問題,主要是吸附能力強於氰化物離子的硫氰化物、銅氰絡合物和鐵氰絡合物。由於上述物質吸附到樹脂上,使樹脂的洗脫變得較為復雜甚至非常困難。
(一)硫氰化物
對於大部分金氰化廠來說,廢水中含有100mg/L以上的SCN-,其中金精礦氰化廠廢水SCN-高達800mg/L以上,由於強鹼性陰離子交換樹脂對SCN-的吸附力較大,而且SCN-的濃度如此之高,使樹脂對其它應吸附而從廢水中除去的組分的吸附量大為降低,如Zn(CN)42-、Cu(CN)32-,同時,由於SCN-的飽和,會使CN-過早泄漏,導致離子交換樹脂的工作飽和容量過低。例如,當廢水中SCN-350mg/L時,其工作飽和容量(指流出液中CN-≤0.5mg/L條件)僅20倍樹脂體積,而且SCN-難以從樹脂上通過簡單的方法洗脫下來,這就限制了具有大飽和容量的強鹼性陰離子交換樹脂的應用,而弱鹼性陰離子交換樹脂飽和容量最高不過強鹼性樹脂的一半,從處理洗脫成本考慮,也不易使用,可見較高的SCN-濃度給離子交換樹脂帶來很大麻煩。如果從樹脂上不洗脫SCN-,那麼流出液CN-不能達標,即使不考慮CN-的泄漏,樹脂對其它離子的工作容量也減少。
(二)銅
盡管樹脂對Cu(CN)32-的吸附力不如Zn(CN)42-大,但它的濃度往往較高,在強鹼樹脂上的飽和容量約8~35kg/m3,甚至更高,但用酸洗脫樹脂上的氰化物時,銅並不能被洗脫下來,而是在樹脂上形成CuCN沉澱,為了洗脫強鹼樹脂上的銅,必須採用含氨洗脫液洗脫,使銅溶解,形成Cu(NH3)42-或Cu(NH3)2+而洗脫下來,這就使工藝復雜化,尤其是洗脫液的再生也不夠簡便。
(三)亞鐵氰化物離子
Fe(CN)64-盡管在樹脂上吸附量不大,但在用酸洗脫樹脂上氰化物和鋅時,會生成Zn2Fe(CN)6、Fe2Fe(CN)6、Cu2Fe(CN)6沉澱物,而使樹脂呈深綠至棕黑色,影響樹脂的再生效果,如果專門洗脫Fe(CN)64-,盡管效果好,可是,洗脫液再生等問題均使工藝變得更長,操作更復雜。
3、技術現狀
根據國產強鹼樹脂的上述特點,提出二種工藝:一是用強鹼性陰離子處理高、中濃度含氰廢水,旨在去除廢水中的Cu、Zn,廢水不達標但由於Cu、Zn的大為減少而有宜於循環使用。二是用強鹼性樹脂處理不含SCN-或SCN-濃度100mg/L以下的廢水,回收氰化物為主,處理後廢水達標外排。例如,在金精礦燒渣為原料的氰化廠用離子交換法處理貧液。把離子交換法用於這兩方面在技術和經濟上估計比用酸化回收法優越。最好的辦法是開發易洗脫再生的新型樹脂,國外的許多開發新型樹脂的報導介紹了吸附廢水中Fe(CN)64-、而且較容易被洗脫下來的樹脂,近年來,由於越來越重視三廢的回收,使人們十分重視使用離子交換法處理廢水使其達到排放標准同時使大多數氰化物得以回收並重新使用這類課題。
加拿大Witteck開發公司開發出的一種氰化物再循環工藝就是其中比較有代表性的一例,該公司為此成立了一個Cy-tech公司專門推銷這種工藝裝置。一份報導介紹,該工藝用於處理鋅粉置換工藝產生的貧液,使用強鹼性陰離子交換樹脂吸附重金屬氰化物,當流出液CN-超標時對樹脂進行酸洗,使用硫酸自下而上通過樹脂床即可使樹脂上的重金屬和氰化物被洗脫下來,其重金屬以陽離子形式存在於洗脫液中,洗脫液用類似於酸化回收法的裝置回收HCN,然後大部分洗脫液進行再生並重復用於洗脫。回收的NaCN用於氰化工段,少量洗脫液經過中和沉澱出重金屬離子後外排。據稱這種方法也可用於處理炭漿廠的尾漿,其工藝和樹脂礦漿法十分類似。Cy-tech公司認為該工藝經改進後也可消除尾礦庫排水中殘余氰化物及其它重金屬,該報導無詳細數據、資料以及樹脂的型號。
另一報導稱,這項工藝的關鍵是在廢水進入離子交換柱前,先完成一個化學反應(使游離CN-形成Zn(CN)42-),並在化學反應中應用一種催化劑,有關人士解釋說,如果沒有這個反應,廢水就不得不通過若干個交換柱提出那些無用的分子,從而增加了系統的成本和復雜性。
採用一段順流吸附裝置處理效果是CN-<0.5mg/L、各種重金屬的總和小於1mg/L,處理能力約720加侖/h,樹脂量約36加侖。
該試驗裝置大約需要處理3500加侖廢水才能使一個交換柱飽和,每隔一天對交換柱進行一次解吸,每月最大產渣量(重金屬沉澱物)也可裝入1隻45加侖的桶中,其廢水按所給數據估算重金屬總含量不大於50mg/L,估計重金屬絕大部分是鋅粉置換產生的Zn(CN)42-,該工藝裝置的投資與其它處理裝置相當。能在一年多的時間里靠回收氰化物而收回全部投資,該工藝由Cy-tech公司開始轉讓。但無工業應用的詳細報導。
我國對離子交換法處理氰化廠含氰廢水的研究主要有兩個目的,一是解決氰化—鋅粉置換工藝產生貧液的全循環問題,即從貧液中除去銅和鋅,為了達到較高的吸附容量,通常使用強鹼性陰離子交換樹脂, 當廢水中銅、鋅含量分別為140、100mg/L時,強鹼樹脂的工作吸附容量不小於15kg/m3和6.5kg/m3。飽和樹脂經酸洗回收氰化物並能洗脫部分鋅,然後用另一種洗脫劑洗脫銅,樹脂即可再生,而銅的洗脫劑需經再生方可重復使用,由於工藝較長目前尚無工業應用。
含氰廢水→過濾→離 子 交 換→(低濃度含氰廢水)返回浸出或處理

(飽和樹脂)回收氰化物
↓ 再生樹脂返回使用
洗脫重金屬

重金屬回收

圖11-1離子交換法回收氰化物工藝

當然如果廢水中銅和SCN-極低時,樹脂的再生僅通過酸洗就
可完成,此條件下可保證離子交換工藝出水達標。無論是國內還是國外,其離子交換工藝原則流程大致相同,見圖11-1。
4、離子交換法的特點
(一)優點:
1)當廢水中CN-低於酸化回收法的經濟效益下限時,採用離子交換法由於氰化物和貴金屬具有較好的經濟效益,其處理效果優於酸化法,當廢水組成簡單時可排放。
2)投資小於酸化回收法
3)與酸化回收法相比,該方法葯耗、電耗小,金回收率高。
(二)缺點:
1)當廢水中SCN-含量高時,洗脫困難,樹脂的容量受到影響,處理效果變差,離子交換法的應用范圍受SCN-很大影響。
2)在洗脫氰化物過程中,很難洗脫銅,故需專門的洗脫方法和步驟,使工藝復雜化。
3)在酸洗過程中,Fe(CN)64-會在樹脂顆粒內形成重金屬沉澱物而使樹脂中毒。
4)對操作者的素質要求高。
三、吸附—回收法
前面已談過,離子交換為化學吸附,吸附力較強,故解吸困難,解吸成本高。近來,國外開發了用吸附樹脂、活性炭做吸附劑,從含氰礦漿或廢水中回收銅和氰化物的技術,已完成了半工業試驗。
1、吸附樹脂吸附—回收法
西澳大利亞一炭浸廠對液相中銅、氰化鈉濃度分別為85、158mg/L之氰尾進行了吸附─回收法半工業試驗,採用法國地質科學研究所開發的V912吸附樹脂,處理能力為10m3/d,處理後尾漿液相中游離氰化物(CN-)濃度小於0.5mg/L。飽和樹脂分兩級洗脫再返回使用,用金屬洗脫劑洗重金屬,用硫酸洗脫氰化物,洗脫液用與酸化回收法類似的方法回收氰化物。
試驗表明,當銅濃度增加時,處理成本增加較大。
以半工業試驗結果推算,建一座年處理能力100萬噸的裝置,在銅、氰化鈉濃度分別為100、300mg/L條件下,設備費為250萬加元。年回收銅122t,氰化鈉377t,年洗脫樹脂1700t次,洗脫每噸樹脂的消耗如下(單位:t):

H2SO4攭NaOH Na2S 水 動力
0.5 0.453 0.048 17.5m3 12.3kwh
2、活性炭吸附—回收法
活性炭具有吸附廢水中重金屬和氰化物的特性,這早已人所共知,國外早在十年前就有金礦試驗用來處理貧液中銅等雜質,使貧液全循環,但沒能解決洗脫再生問題。
近年來,西澳大利亞一個炭漿廠完成了用洗性炭從浸出礦漿中回收銅和氰化物的半工業試驗,採用加溫解吸法選擇性解吸銅,含銅解吸液在酸性條件下沉澱氰化銅,再把氰化銅用硫酸氧化為硫酸銅出售。酸性水中的HCN用鹼性解吸液吸收再用於解吸工藝中。
銅是氰化過程增加氰化物耗量的一個較大因素,從浸出礦漿中回收銅和氰化物不但避免了銅對浸出的影響,提高了金的浸出率,而且減少了氰化物的消耗,具有一定的經濟效益,這一技術在特定的條件下可用來做為貧液全循環工藝中的去除銅措施。
四、自然凈化法
黃金氰化廠除少數收購金精礦進行提金然後把氰渣做硫精礦出售而不設尾礦庫外,絕大部分礦山建有較大容量的尾礦庫(池)。氰化廠廢水在其內停留時間一般在1~3天,有個別尾礦庫,廢水可停留十天以上。由於曝氣、光化學反應,共沉澱和生物作用,氰化物的濃度逐漸降低,這種靠尾礦庫(池),降低氰化物含量的方法稱為自然凈化法。目前絕大部分氰化廠都把尾礦庫自然凈化法做為除氰的一種輔助手段,經廢水處理裝置處理後的廢水再經尾礦庫進行二級處理,排水氰含量進一步降低,由於這種方法沒有處理成本問題(尾礦庫的建設是為了沉降懸浮物和貯有尾礦),故對人們有很大的吸引力,甚至有些氰化廠建立了專門的自然凈化池以期使自然凈化法的處理效果更好,如何提高自然凈化法的處理效果,把目前做為輔助處理方法的自然凈化法單獨用來處理含氰廢水?這是一項很有意義的科研工作,許多科研人員都在深入研究這一課題。
1、自然凈化法的特點
由於使用自然凈化法的氰化廠不多,可靠的數據有限,其特點尚未充分暴露出來。
(一)優點
1)不使用葯劑,處理成本低。
2)與其它方法配合,可做為一級處理方法也可做為二級處理方法,可靈活使用。
3)無二次污染。
(二)缺點
1)對尾礦庫要求高,必須不滲漏,匯水面積要大。
2)受季節、氣候影響大,在寒冷地區效果差。
2、自然凈化法原理
已完成的研究表明,自然凈化法至少是曝氣、光化學反應、共沉澱和生物分解四種作用的疊加。自然,影響自然凈化法效果的因素也就是上述四種作用之影響因素的疊加。
(一)曝氣
含氰廢水與大氣接觸,大氣中的SO2、NOx、CO2就會被廢吸收,使廢崐水pH值下降。
CO2+OH-→HCO3-
SO2+OH攩-攪→HSO3-
隨著廢水pH值的下降,廢水中的氰化物趨於形成HCN:
CN-+H+→HCN(aq)
亞鐵氰化物會與重金屬離子形成沉澱物這一反應促使重金屬氰化物的解離,以Zn(CN)42-為例:
Zn(CN)42-+Fe(CN)64-+4H+→Zn2Fe(CN)6↓+4HCN(aq)
由於空氣中HCN極微,廢水中的HCN將傾向於全部逸入大氣中,從動力學角度考慮,HCN的逸出速度受如下因素影響:
1)廢水溫度,廢水溫度高,HCN蒸氣分壓高,有利於HCN逸出,而且水溫高,水的粘度小,液膜阻力減少。
2)風力,尾礦庫上方風力大,水的擾動劇烈,氣—液接觸面積增大,酸性氣體和HCN在氣相擴散速度加快,水體內HCN的液相擴散也加快,酸性氣體與水的反應加快。
3)尾礦庫匯水特性
尾礦庫匯水面積大,水層淺,使單位體積廢水與空氣接觸表面增大,風力對水體的攪動效果增大,有利於HCN的逸出和酸性氣體的吸收。
4)廢水組成
廢水中重金屬含量高時,HCN的形成和逸出由於受絡合物解離平衡的限制,速度明顯變慢。
5)廢水pH值
廢水pH值低,有利於重金屬氰絡物的解離和HCN的形成。
HCN全部從水中逸出需要較長時間,其道理與酸化回收相似,在1m深的水層條件下,表層氰化物濃度為0.5mg/L時,底層氰化物濃度15mg/L,可見HCN逸出之難度。
在曝氣過程中,空氣中的氧不斷地溶於廢水中,其傳質速率也受液相擴散阻力的影響,表層溶解氧濃度高,底部濃度低,溶解氧進入液相後,與氰化物發生氧化反應:
2Cu(CN)2-+0.5O2+3H2O+2H+→2Cu(OH)2↓+4HCN
2CN-+O2→2CNO-
CNO-+2H2O→CO32-+NH4+
含氰廢水在尾礦庫內,還會發生水解反應,生成甲酸銨,廢水溫度越高,反應速度越快:
HCN+H2O=HCO-ONH4
這些反應的總和就是曝氣的效果,為了提高曝氣效果,必須提高廢水溫度,廢水與空氣的接觸表面積,增大水體的攪動程度,這樣才能保證HCN迅速逸入空氣而氧迅速溶解於廢水中並和氰化物反應,曝氣法受季節地域影響較大。
(二)光化學反應
廢水中的各種氰化物在陽光紫外線的照射下,發生如下反應:
Fe(CN)64-+H2O→Fe(CN)53-·H2O+CN-
4Fe(CN)64-+O2+2H2O→4Fe(CN)63-+4OH-
4Fe(CN)64-+12H2O→4Fe(OH)3↓+12HCN+12CN-
亞鐵氰化物和鐵氰化物離子在光照下分解出遊離氰化物,文獻介紹在3~5小時的光照時間里,60%~70%的鐵氰化物分解、80%~90%的亞鐵氰化物分解。由於分解出的氰化物不會很快地被氧化,因而會造成水體氰化物含量增高,這就是地表水水質指標中要求用總氰濃度的原因之一。
分解出的游離氰化物不斷地被氧化,水解以及逸入空氣中,達到了降低廢水中氰化物濃度的目的。
逸入空氣中的HCN,在陽光紫外線作用下,與氧發生反應。
HCN+0.5O2→HCNO
夏季,反應時間約10分鍾,冬季約1小時,從這點看,HCN的逸出不會影響大氣的質量,許多焦化廠利用曝氣法處理含氰廢水,其氰化物揮發量比黃金行業多,而且大部分工廠位於城市,並未聞發生污染事故。
光化學反應與氣溫和光照強度有關,因此,夏季除氰效果遠比冬季好。
(三)共沉澱作用
廢水中亞鐵氰化物還會形成Zn2Fe(CN)6、Pb2Fe(CN)6之類的沉澱,與Cu(OH)2、Fe(OH)3、CaCO3、CaSO4等凝聚在一起,沉於水底從而達到了去除重金屬和氰化物的效果,沉澱效果受pH值和廢崐水組成的制約,pH值低時效果好。
(四)生物化學反應
當尾礦庫廢水氰化物濃度很低時,廢水中的破壞氰化物的微生物將逐漸繁殖起來,並以氰化物為碳、氮源,把氰化物分解成碳酸鹽和硝酸鹽。
生物化學作用受廢水組成和溫度影響,如果氰化物濃度高達100mg/L,那麼微生物就會中毒死亡,如果溫度低於10℃,則微生物不能繁殖,生化反應也不能進行。
綜上所述,自然凈化法的效果受地理位置(南、北方、高原、平原)、天氣(陰、晴、氣溫、風力)、尾礦庫(匯水面積、水深、水流速度)微生物,廢水組成(pH、氰化物濃度、重金屬濃度)廢水在尾礦庫內停留時間等諸因素的影響。至崐於上述因素對曝氣、光化學反應,共沉澱以及生化反應的影響程度,以及這四種除氰途徑哪個作用大,目前尚無定量的數據可供參考。某研究所提出的氰化物自凈數學模型如下:
C=C0e-kt
其中,k為常數,單位:小時;t為自然凈化時間(小時),C、C0分別為某時某刻氰化物濃度和原始氰化物濃度。當溫度在10~30℃范圍內時,式中k值在0.005~0.01范圍,由於k值僅反應了溫度,沒有反應其它眾多的因素,故無多大應用價值。
正因為自然凈化法受許多因素制約,其處理效果並不穩定,如果進入尾礦庫的崐廢水氰化物濃度低(<10mg/L)、廢水在尾礦庫停留時間長,排水有可能達標,大部分氰化廠把尾礦庫做為二級處理設施。然而近年來,由於氰化物處理費用增高,一些氰化廠正探索用尾礦庫做為氰化物的一級處理設施。
3、自然凈化法的實踐
某全泥氰化廠尾礦庫建在較厚(2~5m),黃土層的溝內,廢水無滲入地下水的可能,該地區乾燥少雨,年蒸發水量大於降雨量,故尾礦庫無排水,氰化物在尾礦庫內自然凈化,不再採用其它方法處理,節省了大量葯劑、費用,降低了選礦成本。
某全泥氰化廠尾礦庫不滲漏,含氰化物尾礦漿直接排入尾礦庫,經自然凈化再進行二級處理,使其達標排放,由於二級處理的是澄清水,而且氰化物濃度有較大的降低,故處理成本大幅度下降,處理效果好。
某浮選—氰化—鋅粉置換工藝裝置,其貧液用酸化回收法處理後,殘氰在5~20mg/L經浮選廢水(漿)稀釋後,氰化物含量在0.5~2范圍,進入尾礦庫自然凈化,外排水CN-<0.5mg/L。
某氰化廠採用酸化回收法處理貧液,其酸性廢水含氰5~10mg/L,在2m深的廢水池內,經20天的自然凈化,氰化物降低到0.5mg/L。

⑷ 微生物在污水處理中的應用論文我郵箱是[email protected]謝謝

微生物在污水處理中的應用
摘要:本文主要闡述了各種微生物在不同種類污水中的應用,以及它們不同的應用機理。
關鍵詞:微生物 生活污水 工業污水 農業污水 重金屬 農葯
1.世界水資源現狀
環境保護是我國的基本國策。世界經濟發展的實踐證明,為實現經濟的持續穩定的發展,必須解決好發展與環境保護的矛盾。
全球水資源狀況迅速惡化,「水危機」日趨嚴重。據水文地理學家的估算,地球上的水資源總量約為13.8億立方公里,其中97.5%是海水(13.45億立方公里)。淡水只佔2.5%,其中絕大部分為極地冰雪冰川和地下水,適宜人類享用的僅為0.01%.
20世紀50年代以後,全球人口急劇增長,工業發展迅速。一方面,人類對水資源的需求以驚人的速度擴大;另一方面,日益嚴重的水污染蠶食大量可供消費的水資源。本屆世界水論壇提供的聯合國水資源世界評估報告顯示,全世界每天約有200噸垃圾倒進河流、湖泊和小溪,每升廢水會污染8升淡水;所有流經亞洲城市的河流均被污染;美國40%的水資源流域被加工食品廢料、金屬、肥料和殺蟲劑污染;歐洲55條河流中僅有5條水質差強人意。
20世紀,世界人口增加了兩倍,而人類用水增加了5倍。世界上許多國家正面臨水資源危機:12億人用水短缺,30億人缺乏用水衛生設施,每年有300萬到400萬人死於和水有關的疾病。到2025年,水危機將蔓延到48個國家,35億人為水所困。水資源危機帶來的生態系統惡化和生物多樣性破壞,也將嚴重威脅人類生存。
水資源危機既阻礙世界可持續發展,也威脅著世界和平。過去50年中,由水引發的沖突共507起,其中37起有暴力性質,21起演變為軍事沖突。專家警告說,隨著水資源日益緊缺,水的爭奪戰將愈演愈烈。
2.污水處理方法分類
2.1物理法
利用物理作用分離廢水中呈懸浮狀態的污染物質。主要有沉澱法,過濾法,離心分離法,吸附法等。
2.2化學法
利用化學反應原理及方法來分離,回收廢水中的污染物,或改變污染物的性質,使它從有害變為無害的處理法。主要有化學凝聚法,中和法,氧化還原法,離子交換法。
2.3生物法
主要利用微生物的生命活動過程,對廢水中的污染物質進行轉移和轉化的作用,從而是污水得到凈化的方法。
2.4.微生物簡介
微生物是肉眼看不見或看不清的生物的總稱。包括原核生物(細菌,放線菌和藍細菌),真核生物(真菌和微型藻類),非細胞生物(病毒類)。微生物具有體積小、表面積大、繁殖力驚人等特點,能不斷與周圍環境快速進行物質交換。污水具備微生物生長繁殖的條件,因而微生物能從污水中獲取養分,同時降解和利用有害物質,從而使污水得到凈化。因此微生物可在污水凈化和治理中得到廣泛應用,造福人類。
微生物能降解和轉化污染物主要是因為微生物具有以下幾個特點:個體微小,比表面積大,代謝速率快;種類繁多,分布廣泛,代謝類型多樣;具有多種降解酶;繁殖快,易變異,適應性強;共代謝作用等。
3.原理
利用微生物處理污水實際就是通過微生物的新陳代謝活動,將污水中的有機物分解,從而達到凈化污水的目的.微生物能從污水中攝取糖,蛋白質,脂肪,澱粉及其它低分子化合物。微生物新陳代謝類型有需氧型和厭氧型兩種,因此,凈化方法分為好氧凈化和厭氧凈化.
3.1.好氧凈化
氧存在條件下,許多好氧微生物通過分解代謝、合成代謝和物質礦物化,在把有機物氧化分解成CO2和H2O等過程中,獲尋C源、N源、P源、S和能量。污水的微生物好氧凈化就是模擬上述原理,把微生物置於一定的構築物內通氣培養,高效率凈化污水的方法。
3.2厭氧凈化
微生物在嚴格厭氧條件下,有機物發酵或消化過程中,大部分有機物被解生成H2、CO2、H2S和CH4等氣體。污水的生物厭氧凈化就是根據污水經厭氧發酵後既到凈化,又獲得了生物能源CH4的原理。微物細胞能量轉移的電子受體,由好氧條件下分子氧改變為厭氧條件下的有機物。在厭氧件下,不溶於水而難分解的大分子有機污物,被微生物的胞外酶降解為可溶性物質,再由產甲烷厭氧細菌和產氫細菌降解成低分子有酸類和醇類、並放出H2和CO2;有機酸類和類經產甲烷菌降解成H2、CO2和CH4。甲烷菌還可利用H2還原CO2,形成CH4。
微生物凈化過程:
Ⅰ.有機污染物的濃度由高變低
Ⅱ.異養細菌迅速氧化分解有機污染物而大量繁殖,然後是以細菌為食料的原生動物出現數量高峰,再後是由於有機物礦化,利於藻類的生長,而出現藻類的生長高峰。
Ⅲ.溶解氧濃度隨著有機物被微生物氧化分解而大量消耗,很快降到最低點,隨後,由於有機物的無機化和藻類的光合作用及其他好氧微生物數量的下降,溶解氧又恢復到原來水平。
這樣,在離開污染源相當的距離之後,水中的微生物數量,有機物,無機物的含量,也都下降到最低點。於是,水體恢復到原來的狀態。
微生物處理優點:微生物具有來源廣,易培養,繁殖快,對環境適應性強,易變異的特徵在生產上較容易的採集菌種進行培養繁殖,並在特定條件下進行馴化,使之適應不同的水質條件,從而通過微生物的新陳代謝使有機物無機化。加之微生物的生存條件溫和,新陳代謝時不需要高溫高壓,它是不需要投加催化劑的.生物法具有廢水處理量大、處理范圍廣、運行費用相對較低,所要投入的人力,物力比其他方法要少的多。在污水生物處理的人工生態系統中,物質的遷移轉化效率之高是任何天然的或農業生態系統所不能比擬的。
4.污水處理中重要的微生物種群
4.1 絲狀細菌
絲狀細菌(Filamentous bacteria)能顯著影響絮狀活性污泥的沉降性(污泥膨脹)或引起生物量變化和泡沫形成(污泥發泡),從而嚴重影響活性污泥的處理效率.傳統上,絲狀細菌是通過光學顯微鏡學進行分析鑒定的,如革蘭氏和Neisser染色反應、典型的形態學特徵等.但應用full—cycle rRNA技術發現,傳統形態學鑒定方法不能發現污水廠活性污泥中的許多絲狀細菌 。
系統發生樹部分提供了絲狀菌的系統發生親緣關系,但有些絲狀類型如Eikelboom 1863或Nostocoidalimicola等則是放置在完全無關的類群中.現在利用rRNA目標寡聚核苷酸探針能迅速地鑒定大多數絲狀菌,證明在活性污泥中有些絲狀菌呈現多態性現象.Kanagawa等(2000)從活性污泥中分離出15種絲狀菌,根據形態被分類為Eikelboom 21 N,利用16S rDNA序列分析表明都同變形桿菌亞綱的Thiothrix絲狀菌形成單系群(monophyletic group).Thiothrix絲狀菌在污水中通常表現出生理多能性,在異養、兼性營養和化能自養情況下,它們都能同標記的乙酸鹽或碳酸氫鹽結合。在厭氧狀況下(無論有無硝酸鹽),Thiothrix絲狀菌都很活躍,它通過吸收硫代硫酸鹽和乙酸鹽來形成胞內硫粒。
利用絲狀菌的FISH探針,Mircothrix parvicella被發現有特殊的脂消費,在厭氧情況下專門吸收長鏈脂肪酸(而不是短鏈脂肪酸和葡萄糖),隨後當硝酸鹽或氧可用作電子受體時它們則使用貯存完成生長.不過,在厭氧情況下,M.parvicella不能吸收磷,不適合那些有除磷要求的生物反應器.利用FISH技術對絲狀菌進行系統分類發現,大多數未描述的絲狀菌屬於綠色非硫細菌(Chloroflexi),也可能是污水生物處理系統中豐度最高的絲狀菌。Liao等(2004)發展一種定量FISH,對實驗室和污水廠反應器中的絲狀菌進行了研究,以增加Sphaerotilus natans的方式來刺激污泥膨脹,結果發現是Eikelboom 1851菌叢(而不是試驗的S.natans菌)同活性污泥容積指數(volume index)極度相關,其可延伸的菌絲長度約為6×10。la,m/mL。
4.2 生物除磷的重要細菌
生物除磷可以在EBPR的微生物途徑中由完成,該過程通過循環活性污泥進行交替的厭氧、需氧為特徵。基於微生物的純培養技術,變形桿菌綱г亞綱的不動桿菌屬(Acinetobacter)長期被認為是唯一的PAO(Polyphosphate—accumulating organism).但實際上,雖然不動桿菌能積累多聚磷酸鹽,卻沒有PAO的典型代謝方式.Wanger等(1994)用rRNA目的探針測試後認為,主要的PAO應該為口亞綱中的Rhoclocyclus群,其次為 亞綱中的Planctomycete群及屈撓桿菌屬(Flexibacter)、CFB群(Cytophaga—Flavobacterium—Bacteroides)等.利用螢光抗體染色、呼吸醌檢測和屬特異探針的FISH等非培養方法,證明在EBPR系統中,由於培養偏差顯然高估了不動桿菌的相對豐度,表明其對EBPR系統實際上不是最重要的,而另外一些分離出的細菌才是PAO的候選者。不過,有7個Acinembacter新種從活性污泥中分離到,可望進一步闡釋該屬在脫磷中扮演的角色和意義。
積磷小月菌(Microlunatus phosphovorus)是一個高G+C含量的革蘭氏陽性菌,被認為是專性好氧菌,可以通過EMP途徑發酵葡萄糖為乙酸,而不能夠在厭氧情況下生長.有明顯吸收葡萄糖、分泌乙酸的轉化,導致胞內乙酸積累;產生的乙酸在隨後的好氧階段消耗掉.phosphovorus表現出卓越的吸收和釋放磷的能力,磷釋放率和吸收率可分別高達3.34 mmol g/cell•h和1.56 mmol g/cell•h,比Lampropedia spp.和Acinetobacterspp.要高1個數量級,特異探針證明其在EB—PR工廠里可占總細菌的2.7%。
俊片菌屬(Lampropedia)也擁有聚磷菌的基本代謝特徵,但比EBPR模型預言的吸收乙酸鹽釋放磷酸鹽的比率要低很多.那些被建議名為「Candidatus Ac—cumulibacter phosphates」已被證實顯著存在於EBPR系統中.Saunders等(2003) 在對6個運行污水廠進行了檢測後認為,很可能「無關緊要」的「CandidatusAccumulibacter phosphates」正是重要的PAO.另外還有顯微鏡原位觀察顯示,酵母菌很可能涉及在生物除磷中,許多「聚磷菌」很可能是酵母菌的孢子,但其作用機理顯然還需要進一步探討.
4.3 硝化細菌
氮循環是高度依賴微生物活性和轉化的一個過程.這類微生物在污水處理、農業等領域具有極其重要的作用,因此成為近年來世界研究的熱點,變形桿菌的β亞綱幾乎已經成為微生物生態學的模式系統 .Kindaichi等(2004)對自養硝化生物膜進行了FISH分析表明,膜上有50%屬於硝化細菌,其餘50%為異養細菌,分布為變形桿菌α亞綱23% ,г亞綱13% ,綠色非硫細菌9% ,CFB群2%,未定類群3%.該結果表明,硝化細菌通過可溶性產物的產生支持了異養菌,異養菌也從代謝多樣性等方面確保了生物膜的生態穩定性 .從培養角度來說,硝化細菌生長極慢;由於硝化細菌的分布同pH、溫度等敏感,所以污水廠的硝化作用常有崩潰的情況發生.
4.3.1 氨氧化茵
基於16S rDNA序列分析,已經分離和描述過的氨氧化細菌都分屬於變形桿菌綱的2個單系群中.Ni-trosococcusoceanus和N.halophilus屬於Proteobacteria的β亞綱,包括亞硝化單胞菌屬(Nitrosomonas)、亞硝化螺菌屬(Nitrosospira)、亞硝化弧菌屬(Nitrosovibrio)和亞硝化葉菌屬(Nitrosolobus),後3個屬關系密切;而Nitrosococcus mobilis(實際是Nitrosomonas的一個成員)則在β亞綱組成緊密相關的集合.
4.3.2 亞硝酸氧化茵
基於超微特性,已培養出的亞硝酸氧化菌(Nitrite.oxidizing bacteria,NOB)被分為4個已知屬,硝化桿菌屬(Nitrobacter),硝化刺菌屬(Nitrospina),硝化球菌屬(Nitrococcus)和硝化螺菌屬(Nhrospira).16S rDNA序列比較分析表明,硝化桿菌屬及其3個種都屬於變形桿菌的α一亞綱;Nitrospina和Nitrococcus各有一個種,分屬於變形桿菌的δ和г一亞綱;Nitrospira屬包含有moscoviensis和Ⅳ.rrtarin.在傳統上,Nitrobacter一直被認為是最重要的亞硝酸鹽氧化菌.然而,在硝化污水廠內用目的探針的FISH法和定量斑點雜交(Quantitative dot blot)等發現,檢測不到Nitrobacter或者數目很低,因此凸現了非Nitrobacter的NOB在硝化過程中的重要性.Egli等(2003)用不同污泥接種反應器,利用定量FISH和RFLP(Restriction fragment length polymorphism)方法對穩定的硝化作用反應器進行檢測,發現有活性的都屬於Nitrospira屬 J.以Nitrospira序列發展的特定16S rRNA探針,對活性污泥進行FISH查後表明,未培養的類硝化螺菌(Nitrospira—like)以顯著性數目(總菌數的9%)存在,其對亞硝酸鹽氧化的重要性已由反應器富集研究所證實.Nhrospira能固定CO:,也能利用丙酮酸混合營養生長,而不利用乙酸鹽、丁酸鹽和丙酸鹽。
4.4 反硝化細菌
反硝化細菌(Denitrifying bacteria)的大多數鑒定和計數都是依賴培養法.很多屬的成員,如產鹼桿菌屬(Alcaligenes)、假單胞菌屬(Pseudomonas)、甲基桿菌屬(Methylobacteriurn),副球菌屬(Paracoccus)和生絲微菌屬(Hyphornicrobiurrt)等,都從污水廠中作為脫氮微生物群分離出來過,但這些細菌屬在污水廠中是否具有原位脫氮的活性卻很少被知道.在一個補充以甲醇作為還原碳化物的脫氮沙濾中,使用特異FISH探針監測到有大量數目的P.spp和H.spp;而在沒有附加甲醇的非脫氮沙濾中,兩屬存在的數目都低於總細胞0.1% ,這間接證明了在脫氮過程中有兩屬的活性參與。
5.水污染物的類型及處理
5.1生活污水
生活污水是一大污染源。生活污水中含有大量的無機物,有機物。無機物如氯化物,硫酸鹽,磷酸鹽和鈉,鉀,鈣,鐵等碳酸鹽,有機物有纖維素,澱粉,脂肪,蛋白質和尿素等。排放入環境中促使浮游植物生長和大量繁殖,形成赤潮和水華。
生活污水的處理主要是其中有機物的分解,其主要方法有活性污泥法、生物膜法、AB法。
5.1.1活性污泥法
活性污泥法是以活性污泥為主體的廢水生物處理的主要方法。活性污泥法是向廢水中連續通入空氣,經一定時間後因好氧性微生物繁殖而形成的污泥狀絮凝物。其上棲息著以菌膠團為主的微生物群,具有很強的吸附與氧化有機物的能力。
5.1.2生物膜法
生物膜法是利用附著生長於某些固體物表面的微生物(即生物膜)進行有機污水處理的方法。生物膜是由高度密集的好氧菌、厭氧菌、兼性菌、真菌、原生動物以及藻類等組成的生態系統,其附著的固體介質稱為濾料或載體。生物膜自濾料向外可分為慶氣層、好氣層、附著水層、運動水層。生物膜法的原理是,生物膜首先吸附附著水層有機物,由好氣層的好氣菌將其分解,再進入厭氣層進行厭氣分解,流動水層則將老化的生物膜沖掉以生長新的生物膜,如此往復以達到凈化污水的目的。生物膜法具有以下特點:(1)對水量、水質、水溫變動適應性強;(2)處理效果好並具良好硝化功能;(3)污泥量小(約為活性污泥法的3/4)且易於固液分離;(4)動力費用省。
5.1.3AB法
AB法工藝由德國B0HUKE教授首先開發。該工藝將曝氣池分為高低負荷兩段,各有獨立的沉澱和污泥迴流系統。高負荷段A段停留時間約20-40分鍾,以生物絮凝吸附作用為主,同時發生不完會氧化反應,生物主要為短世代的細菌群落,去除BOD達50%以上。B段與常規活性污泥相似,負荷較低,泥齡較長。
5.2工業廢水
工業廢水是水體污染的主要污染源。包括鋼鐵工業廢水,食品工業廢水,印刷廢水,化工廢水等。隨著工業化的發展,含有重金屬離子的廢水產生量越來越多。重金屬離子已成為最重要、最常見的污染物之一。由於重金屬在生物體內的富集、吸收與轉化,從而通過食物鏈危害人體健康。如致癌、致畸等,故而處理重金屬污染刻不容緩。
微生物處理技術在生活污水處理中的應用已經非常成熟並且全面普及,但是在工業污水的處理中還存在著一定的技術問題。相對於生活污水來說,工業污水的成份要復雜的多,大多數工業污水的COD值都相當高,可生化性差,這就給微生物處理帶來了相當大的難度,有些工業污水甚至還有很高的氨氮指標,增加了微生物處理的難度。但是微生物技術的許多優勢註定了它將是工業污水治理的一個方面,而且目前已經有很多行業的工業污水開始採用微生物處理技術並且得到了穩定的運行數據。
這里主要講述關於污水中重金屬的處理。目前可用的微生物法有生物吸附法、硫酸鹽還原菌凈化法和利用微生物的轉化作用去除重金屬。
5.2.1生物吸附法
生物吸附是利用生物量(如發酵工業的剩餘菌體)通過物理化學機制,將金屬吸附或通過細胞吸收並濃縮環境中的重金屬離子,由於重金屬具有毒性,如果濃度太高,活的微生物細胞就會被殺死。所以,必須控制控制被處理水的重金屬濃度。
例如陳小霞等人用小球藻富集鉻離子,研究表明小球藻富集鉻離子的機制主要表現是表面吸附和主動運輸。在生長期和穩定期小球藻富集的鉻以有機鉻存在,而在衰亡期,小球藻富集的鉻以無機鉻存在。
利用工業發酵後剩餘的芽孢桿菌菌體或酵母菌吸附重金屬,具體做法是首先用鹼處理菌體,以便增加其吸附重金屬的能力。然後通過化學交聯法固定這些細胞,固定化的芽孢桿菌對重金屬的吸附沒有選擇性(微生物在結合無機污染物上表現出選擇性,多於大多數合成的化學吸附劑,微生物對金屬的吸附和累積主要取決於不同配位體結合部位對對金屬的選擇性)。可以去除廢水中的Cd、Cr、Cu、Hg、Ni、Pb、Zn 去除率可達99%。吸附在細胞上的重金屬可以用硫酸洗脫,然後用化學方法回收重金屬,經過鹼處理後的固定化細胞還可以重新用於吸附重金屬。
5.2.2硫酸鹽還原菌凈化法
脫硫弧菌屬硫酸鹽還原菌是厭氧化能細菌,它最大的特徵就是在無自由氧的條件下,在有機質存在時通過還原硫酸根變成硫化氫,從中獲得生長能量而大量繁殖;它繁殖的結果是使溶解度很大的硫酸鹽變成了極難溶解的硫化物或硫化氫。這類細菌分布廣泛,海洋、湖泊、河流及陸地上都能存在。在沒有自由氧而有硫酸鹽及有機物存在的地方它就能生長繁殖,其生長溫度為25~35攝氏度,PH值為6.2~7.5.該細菌的作用可將廢水中的硫酸根變成硫化氫,使廢水中濃度較高的重金屬Cu、Pb、Zn等轉變為硫化物而沉澱,從而使廢水中的重金屬離子得以去除。
5.2.3利用微生物的轉化作用去除重金屬
微生物可以通過氧化作用、還原作用、甲基化作用和去烷基化作用對重金屬和重金屬類化合物進行轉化。
細菌胞外的莢膜或粘膜層可產生多種胞外多聚體,胞外多聚體能夠吸附自然條件下或廢水處理設施中的重金屬。其主要成分是多糖、蛋白質和核酸。
真菌的細胞壁內含幾丁質,這和N----乙醯葡糖胺多聚體是一種有效的金屬於放射性核素結合的生物吸附劑。經過氫氧化物處理的各類真菌暴露出來的幾丁質、脫乙醯殼多糖和其他金屬結合的配位體,形成菌絲層,可以有效的去除廢水中的重金屬。
六價鉻具有強烈的毒性,其毒性是三價鉻的100倍,而且能在人體內沉澱。由於六價鉻很容易通過胞膜進入細胞,然後在細胞質、線粒體和細胞核中被還原為三價鉻,三價格在細胞內與蛋白質結合為穩定的物質並且和核酸相作用,而細胞外的三價鉻是不能參透細胞的,細菌利用細胞中的NADH作為還原劑,在厭氧或好氧的狀態下,將六價鉻還原為三價鉻。如陰溝腸桿菌能抗10000µmol/l鉻酸鹽,在厭氧的條件下能使六價鉻還原為三價鉻,三價鉻可以通過沉澱反應與水分離而被去除。
5.3農業廢水
它面廣而量大且分散。農田使用農葯,化學農葯主要是人工合成的生物外源性物質,很多農葯本身對人類及其他生物是有毒的,而且很多類型是不易生物降解的頑固性化合物。農葯殘留很難降解,人們在使用農葯防止病蟲草害的同時,也使糧食、蔬菜、瓜果等農葯殘留超標,污染嚴重,同時給非靶生物帶來傷害,每年造成的農葯中毒事件及職業性中毒病例不斷增加。同時,農葯廠排出的污水和施入農田的農葯等也對環境造成嚴重的污染,破壞了生態平衡,影響了農業的可持續發展,威脅著人類的身心健康。農葯不合理的大量使用給人類及生態環境造成了越來越嚴重的不良後果,農葯的污染問題已成為全球關注的熱點。因此,加強農葯的生物降解研究、解決農葯對環境及食物的污染問題,是人類當前迫切需要解決的課題之一。
5.3.1 農業生產上主要使用的農葯類型
當前農業上使用的主要有機化合物農葯如表1所示。其中,有些已經禁止使用,如六六六、滴滴涕等有機氯農葯,還有一些正在逐步停止使用,如有機磷類中的甲胺磷等。
表1 農業生產中常用農葯種類簡表

類 型 農 葯 品 種

有機磷:敵百蟲、甲胺磷、敵敵畏、乙醯甲胺磷、對硫磷、雙硫磷、樂果等

殺蟲劑 有機氮:西維因、速滅威、巴沙、殺蟲脒等
有機氯:六六六、滴滴涕、毒殺芬等

殺蟎劑 蟎凈、殺蟎特、三氯殺蟎碸、蟎卵酯、氯殺、敵蟎丹等

除草劑 2,4-D、敵稗、滅草靈、阿特拉津、草甘膦、毒草胺等

殺菌劑 甲基硫化砷、福美雙、滅菌丹、敵克松、克瘟散、稻瘟凈、多菌靈、葉枯凈等
生長調節劑 矮壯素、健壯素、增產靈、赤黴素、縮節胺等
人們發現,在自然生態系統中存在著大量的、代謝類型各異的、具有很強適應能力的和能利用各種人工合成有機農葯為碳源、氮源和能源生長的微生物,它們可以通過各種謝途徑把有機農葯完全礦化或降解成無毒的其他成分,為人類去除農葯污染和凈化生態環境提供必要的條件。
5.3.2 降解農葯的微生物類群
土壤中的微生物,包括細菌、真菌、放線菌和藻類等,它們中有一些具有農葯降解功能的種類。細菌由於其生化上的多種適應能力和容易誘發突變菌株,從而在農葯降解中佔有主要地位。一在土壤、污水及高溫堆肥體系中,對農葯分解起主要作用的是細菌類,這與農葯類型、微生物降解農葯的能力和環境條件等有關,如在高溫堆肥體系當中,由於高溫階段體系內部溫度較高(大於50 ℃),存活的主要是耐高溫細菌,而此階段也是農葯降解最快的時期。通過微生物的作用,把環境中的有機污染物轉化為CO2和H2O等無毒無害或毒性較小的其他物質。通過許多科研工作者的努力,已經分離得到了大量的可降解農葯的微生物(見表2)。不同的微生物類群降解農葯的機理、途徑和過程可能不同,下面簡要介紹一下農葯的微生物降解機理。
5.3.3 微生物降解農葯的機理
目前,對於微生物降解農葯的研究主要集中於細菌上,因此對於細菌代謝農葯的機理研究得比較清楚。
表2 常見農葯的降解微生物
農 葯 降 解 微 生 物
甲胺磷 芽孢桿菌、麴黴、青黴、假單胞桿菌、瓶型酵母
阿特拉津(AT) 煙麴黴、焦麴黴、葡枝根霉、串珠鐮刀菌、粉紅色鐮刀菌、尖孢鐮刀菌、斜卧鐮刀菌、微紫青黴、皺褶青黴、平滑青黴、白腐真菌、菌根真菌、假單胞菌、紅球菌、諾卡氏菌
幼脲3號 真菌
敵殺死 產鹼桿菌
2,4-D 假單胞菌、無色桿菌、節桿菌、棒狀桿菌、黃桿菌、生孢食纖維菌屬、鏈黴菌屬、麴黴菌、諾卡氏菌、
DDT 無色桿菌、氣桿菌、芽孢桿菌、梭狀芽孢桿菌、埃希氏菌、假單胞菌、變形桿菌、鏈球菌、無色桿菌、黃單胞菌、歐文氏菌、巴斯德梭菌、根癌土壤桿菌、產氣氣桿菌、鐮孢黴菌、諾卡氏菌、綠色木霉等
丙體六六六 白腐真菌、梭狀芽孢桿菌、埃希氏菌、大腸桿菌、生孢梭菌等
對硫磷 大腸桿菌、芽孢桿菌
七 氯 芽孢桿菌、鐮孢黴菌、小單孢菌、諾卡氏菌、麴黴菌、根黴菌、鏈球菌
敵百蟲 麴黴菌、鐮孢黴菌
敵敵畏 假單胞菌
狄氏劑 芽孢桿菌、假單胞菌
艾氏劑 鐮孢黴菌、青黴菌
樂 果 假單胞菌
2,4,5-T 無色桿菌、枝動桿菌
細菌降解農葯的本質是酶促反應,即化合物通過一定的方式進入細菌體內,然後在各種酶的作用下,經過一系列的生理生化反應,最終將農葯完全降解或分解成分子量較小的無毒或毒性較小的化合物的過程。如莠去津作為假單胞菌ADP菌株的唯一碳源,有3種酶參與了降解莠去津的前幾步反應。第一種酶是A tzA,催化莠去津水解脫氯的反應,得到無毒的羥基莠去津,此酶是莠去津生物降解的關鍵酶;第二種酶是A tzB,催化羥基莠去津脫氯氨基反應,產生N-異丙基氰尿醯胺;第三種酶是A tzC,催化N-異丙基氰尿醯胺生成氰尿酸和異丙胺。最終莠去津被降解為CO2和NH3。微生物所產生的酶系,有的是組成酶系,如門多薩假單胞菌DR-8對甲單脒農葯的降解代謝,產生的酶主要分布於細胞壁和細胞膜組分;有的是誘導酶系,如王永傑等得到的有機磷農葯廣譜活性降解菌所產生的降解酶等。由於降解酶往往比產生該類酶的微生物菌體更能忍受異常環境條件,酶的降解效率遠高於微生物本身,特別是對低濃度的農葯,人們想利用降解酶作為凈化農葯污染的有效手段。但是,降解酶在土壤中容易受非生物變性、土壤吸附等作用而失活,難以長時間保持降解活性,而且酶在土壤中的移動性差,這都限制了降解酶在實際中的應用。現在許多試驗已經證明,編碼合成這些酶系的基因多數在質粒上,如2,4-D的生物降解,即由質粒攜帶的基因所控制。通過質粒上的基因與染色體上的基因的共同作用,在微生物體內把農葯降解。因此,利用分子生物學技術,可以人工構建「工程菌」來更好地實現人類利用微生物降解農葯的願望。

⑸ 城市污水處理常用方法有哪些他們有哪些優缺點

城市污水治理的幾種常用方法
活性污泥處理法
目前在城市生活污水中應用最多的就是所謂的活性污泥法,它有處理能力強,處理後水質好等優勢。其大致組成包括由曝氣池,沉澱池,污泥排放以及迴流等系統。待處理的污水和活性污泥迴流共同進入曝氣池然後混合,然後在其中與空氣接觸使得含氧量增加,發生代謝反應。經過充分攪拌的混合液變為懸浮狀態,所以其中的有機污染物和氧氣能夠與微生物接觸發生反應。接下來進入的是沉澱池,原來的懸浮固體會在其中沉降而被隔離,所以從沉澱池流出的已經為凈化水。沉澱池裡的污泥一般都會迴流,從而保證曝氣池中的懸浮固體和微生物有一定的濃度。在曝氣池裡的反應會使微生物增殖,所以過多的微生物要排出沉澱池以維持整個系統的穩定性。除需要能夠氧化和分解有機物外,活性污泥還必須有一定凝聚和沉降能力,以便可以使其從混合液中分離,進而在出口得到純凈的水。活性污泥法的缺點在於其基礎建設的成本過高,不易實施。
生物膜處理法
所謂生物膜法,就是通過在一些固體物表面附著的微生物對污水中的有機污染物加以處理的方法。它和活性污泥處理方法發展時間基本一致。所謂的「生物膜」即是附著在固體表面的微生物形象叫法,一般是由非常密集的好氧菌,厭氧菌,原生動物和藻類等結合一起形成的生態系統。生物膜所附著的固體介質叫做載體或濾料,由此向外生物膜可以分成厭氣層,好氣層,附著以及運動水層。整個方法的基本運作過程為,先由生物膜吸附水層中的有機物,然後由好氧菌進行分解,再由厭氧菌進行厭氣分解,運動水層通過流動不斷更新生物膜,由此反復實現對污水的凈化作用。
一般適用生物膜法的場合為中小規模城市廢水的處理,所用的處理結構是生物濾池或生物轉盤,在我國的南方一般使用生物濾池。由於材料和技術的不斷革新,生物膜法技術近年來進步很大。因為生物膜法中微生物一般固定在填料上,所以構成的生態系統比較穩定,微生物生活和消耗的能量比活性污泥法中要小得多,其剩餘的污泥也更少。生物膜法所擁有的高效率高,高耐沖擊性、產泥量低以及運管便利性等優勢使其在各種處理方法中競爭力極大。生物膜法的劣勢在於成本較高且單位處理效率低。所以進一步降低成本,提高效率是今後生物膜法研究的主要方向。
氧化處理法
氧化處理法是當今被廣泛使用的一種城市污水預處理方法,有較大的潛力。可根據其中氧化劑的種類和反應器類型對其分類為化學氧化法,催化氧化法以及光催化氧化法等。其中,化學氧化法的操作比較簡單,但效果不夠明顯且運行成本較高,所以實際工作中應用不多。為實現處理效果的提高,降低成本的目標,目前找到了一些其他氧化技術。
在這些新方法中的其中一種就是光催化法。它的特點是所需設備簡單,條件溫和,氧化能力高並且處理效果徹底。在污水處理中受到廣泛歡迎。
光催化反應就是通過光的作用發生的化學反應。反應過程中分子由於吸收特定波長的光波而轉變為分子激發態,進而發生化學反應形成新物質,或者變成中間化學產物以促進熱反應的進行。光化學反應所需的活化能來自於光,把太陽能的中的光能進行光電轉化和光化學轉化加以利用是目前非常熱門的研究領域。
光催化氧化技術利用光激發氧化將O2、H2O2等氧化劑與光輻射相結合。所用光主要為紫外光,包括uv-H2O2、uv-O2等工藝,可以用於處理污水中CHCl3、CCl4、多氯聯苯等難降解物質。另外,在有紫外光的Feton 體系中,紫外光與鐵離子之間存在著協同效應,使H2O2分解產生羥基自由基的速率大大加快,促進有機物的氧化去除。
所謂光化學反應,就是只有在光的作用下才能進行的化學反應。該反應中分子吸收光能被激發到高能態,然後電子激發態分子進行化學反應。光化學反應的活化能來源於光子的能量。在太陽能利用中,光電轉換以及光化學轉換一直是光化學研究十分活躍的領域。80 年代初,開始研究光化學應用於環境保護,其中光化學降解治理污染尤受重視,包括無催化劑和有催化劑的光化學降解。前者多採用臭氧和過氧化氫等作為氧化劑,在紫外光的照射下使污染物氧化分解;後者又稱光催化降解,一般可分為均相、多相兩種類型。均相光催化降解主要以Fe2+或Fe3+及H2O2為介質,通過光助-芬頓(photo-Fenton)反應使污染物得到降解,此類反應能直接利用可見光;多相光催化降解就是在污染體系中投加一定量的光敏半導體材料,同時結合一定能量的光輻射,使光敏半導體在光的照射下激發產生電子空穴對,吸附在半導體上的溶解氧、水分子等與電子-空穴作用,產生·OH 等氧化性極強的自由基,再通過與污染物之間的羥基加合、取代、電子轉移等使污染物全部或接近全部礦質化,最終生成CO2、H2O 及其它離子如NO3-、PO43-、S042-、Cl-等。與無催化劑的光化學降解相比,光催化降解在環境污染治理中的應用研究更為活躍。
氧化處理法目前由於低成本以及高效率的優勢特點處理方式已經得到了廣泛的關注。另外它在對污水進行深度處理和不易進行生物降解的有機廢水處理等場合都有不錯的前景,成為了國內外一項活躍的研究課題,很多人認為氧化法將在21 世紀成為廢水處理的一項重要方法。

⑹ 污水處理知識

按污水來源分類,污水處理一般分為生產污水處理和生活污水處理。生產污水包括工業污水、農業污水以及醫療污水等,而生活污水就是日常生活產生的污水,是指各種形式的無機物和有機物的復雜混合物,包括:①漂浮和懸浮的大小固體顆粒;②膠狀和凝膠狀擴散物;③純溶液。
按污水的性質來分,水的污染有兩類:一類是自然污染;另一類是人為污染。當前對水體危害較大的是人為污染。水污染可根據污染雜質的不同而主要分為化學性污染、物理性污染和生物性污染三大類。污染物主要有::(1)未經處理而排放的工業廢水;(2)未經處理而排放的生活污水;(3)大量使用化肥、農葯、除草劑的農田污水;(4)堆放在河邊的工業廢棄物和生活垃圾;(5)水土流失;(6)礦山污水。
污水處理廠:有人調查100多座大處理廠,一半曬太陽呢,還有資金不足\成本高\效率低的,普遍效率不足70%,低的只有40%.
污水處理成本能耗情況:基本都是高能耗\低效率。
目前城市生活污水排放已是我國城市水的主要污染源,城市生活污水處理是當前和今後城市節水和城市水環境保護工作的重中之重,這就要求我們要把處理生活污水設施的建設作為城市基礎設施的重要內容來抓,而且是急不可待的事情 。

⑺ 榮縣國有資產經營投資有限公司怎麼樣

榮縣國有資產經營投資有限公司是2005-11-07在四川省自貢市榮縣注冊成立的有限責任公司(國有獨資),注冊地址位於榮縣旭陽鎮沿河西路88號。

榮縣國有資產經營投資有限公司的統一社會信用代碼/注冊號是91510321782250679K,企業法人周評,目前企業處於開業狀態。

榮縣國有資產經營投資有限公司的經營范圍是:政府授權的國有資產的經營、投資(不得從事非法集資、吸收公眾資金等金融活動);公路工程建築;建築工程;充電樁充電服務;機動車充電樁充電零售;建築裝修裝飾工程;建築工程施工;房地產開發經營;燃氣生產和供應;道路貨物運輸;普通貨物倉儲服務;餐飲服務;土地整理;社會經濟咨詢(不得從事非法集資、吸收公眾資金等金融活動);污水處理及其再生利用;農業技術推廣服務;市場經營管理服務;專業停車場服務。(以上經營范圍不含前置許可項目,依法須經批準的項目,經相關部門批准後方可開展經營活動)。在四川省,相近經營范圍的公司總注冊資本為214088萬元,主要資本集中在 5000萬以上 規模的企業中,共17家。

通過愛企查查看榮縣國有資產經營投資有限公司更多信息和資訊。

閱讀全文

與自貢榮縣光學污水處理相關的資料

熱點內容
福州長樂區光學水處理設備價格 瀏覽:971
崇左市電池軟化水設備 瀏覽:807
駐馬店平輿縣線路去離子水設備 瀏覽:997
廣西省制葯純水處理設備 瀏覽:534
寧德蕉城區食品廢水處理廠家 瀏覽:241
周口西華縣化工去離子水設備 瀏覽:913
平涼涇川縣電池水處理系統 瀏覽:781
鄂州梁子湖區食品水處理系統 瀏覽:635
紅河河口瑤族自治縣鍋爐去離子水設備 瀏覽:495
自貢富順縣電子純水處理設備 瀏覽:413
承德興隆縣電池廢水處理設備 瀏覽:911
寧德古田縣電子廢水處理設備 瀏覽:645
徐州泉山區電子去離子水設備 瀏覽:56
昌吉奇台縣食品污水處理 瀏覽:973
武漢漢陽區鍋爐水處理系統 瀏覽:299
長沙芙蓉區紡織廢水處理廠家 瀏覽:669
三門峽澠池縣食品水處理設備價格 瀏覽:371
長沙瀏陽市鍋爐純水處理設備 瀏覽:1
錦州黑山縣印染去離子水設備 瀏覽:920
來賓武宣縣印染水處理設備價格 瀏覽:426