1. 求安徽省各地區污水處理廠的電話、地址和相關負責人信息,多謝!
安徽 淮北市排水有限責任公司污水處理廠 二級生化 2001年 8月
安徽 淮南市污水處理廠 二級生化 2002年 1月
安徽 界首市污水處理廠 二級生化 2002年 10月
安徽 銅陵市新民污水處理廠 二級生化 2003年 7月
安徽 巢湖市污水處理工程有限公司 二級生化 2003年 9月
安徽 合肥望塘污水廠 氧化溝 2003年 9月
安徽 阜陽創業水務有限公司污水處理廠 二級生化 2003年 12月
安徽 六安市城北污水處理廠 氧化溝 2004年 6月
安徽 合肥市朱磚井污水處理廠 SBR 2004年 9月
安徽 渦陽縣城市排水有限責任公司污水處理廠 氧化溝 2004年 11月
安徽 馬鞍山市第二污水處理廠 二級生化 2004年 12月
安徽 宿州市城南污水處理廠 氧化溝 2005年 3月
安徽 太和縣污水處理廠 二級生化 2005年 4月
安徽 黃山市城市污水處理廠 二級生化 2005年 7月
安徽 馬鞍山市水暉環保有限公司污水處理廠 A2/O 2005年 9月
安徽 亳州市污水處理廠 氧化溝 2006年 1月
安徽 無為縣污水處理廠 氧化溝 2007年 1月
安徽 湖州朱家橋污水處理廠 A2/O 2007年 1月
安徽 蒙城縣污水處理廠 氧化溝 2007年 8月
安徽 馬鞍山王家山污水處理廠 氧化溝 2007年 8月
安徽 天長市污水處理廠 氧化溝 2007年 9月
安徽 明光市污水處理廠 氧化溝 2007年 9月
安徽 合肥王小郢污水廠 氧化溝 1998年 9月
安徽 蚌埠市第一污水處理廠 氧化溝 2002年 11月
2. 污水處理中的tss是什麼
TSS就是總懸浮固體,TSS是英語(Total Suspended Solid或者Total Suspended Substance)的縮寫,即水質中的總懸浮物。
它是指水樣通過孔徑為0.45μm的濾膜截留在濾膜上並於103~105℃ 烘乾至恆重的固體物質,是衡量水體水質污染程度的重要指標之一,計量單位是mg/L。
(2)淮北市光學污水處理擴展閱讀:
監測總固體懸浮物:影像數據選擇
廣義的影像數據分為光學影像和雷達影像,光學數據又分為多光譜影像、多時相影像、高光譜影像等。目前國內外對懸浮固體的遙感研究大多利用光學影像,其中大多影像數據都被選作懸浮固體的反演數據。
常見的多時相數據被廣泛的應用於不同時間尺度的懸浮固體空間分布分析上。是搭載於和衛星上的一個重要的感測器,其空間解析度最大可達到,一天可過境次,實時監測能力很強。
王繁等人曾利用資料反演杭州灣表層懸浮物濃度並對其短期變異進行研究。數據屬於中等解析度影像,相比於數據解析度有很大的提高。
3. 污水處理知識
按污水來源分類,污水處理一般分為生產污水處理和生活污水處理。生產污水包括工業污水、農業污水以及醫療污水等,而生活污水就是日常生活產生的污水,是指各種形式的無機物和有機物的復雜混合物,包括:①漂浮和懸浮的大小固體顆粒;②膠狀和凝膠狀擴散物;③純溶液。
按污水的性質來分,水的污染有兩類:一類是自然污染;另一類是人為污染。當前對水體危害較大的是人為污染。水污染可根據污染雜質的不同而主要分為化學性污染、物理性污染和生物性污染三大類。污染物主要有::(1)未經處理而排放的工業廢水;(2)未經處理而排放的生活污水;(3)大量使用化肥、農葯、除草劑的農田污水;(4)堆放在河邊的工業廢棄物和生活垃圾;(5)水土流失;(6)礦山污水。
污水處理廠:有人調查100多座大處理廠,一半曬太陽呢,還有資金不足\成本高\效率低的,普遍效率不足70%,低的只有40%.
污水處理成本能耗情況:基本都是高能耗\低效率。
目前城市生活污水排放已是我國城市水的主要污染源,城市生活污水處理是當前和今後城市節水和城市水環境保護工作的重中之重,這就要求我們要把處理生活污水設施的建設作為城市基礎設施的重要內容來抓,而且是急不可待的事情 。
4. 用光學顯微鏡觀察污水處理生化系統細菌,目鏡和物鏡分別用多少倍的比較合適哪位師哥師姐知道謝謝
10×40應該可以看到了,有100的油鏡就更好了。但你的問題不在這里,大多數細菌不進行染色的話勢不可能看得到的。你可以去網上查一查細菌的簡單染色法,革蘭氏染色法也可以。
操作方法可以到網路之類的地方搜,網上肯定有。就用革蘭氏染色法就應該可以了。染料是結晶紫和番紅(復紅也可以)。
5. 污水處理技術的基本信息
作者:柏景方 主編
出 版 社:哈爾濱工業大學出版社
出版時間:2006-7-1
版次:1頁數:456字數:642000印刷時間:2006-7-1開本:紙張:膠版紙印次:I S B N:9787560323022包裝:平裝
6. 污水處理廠的實驗室都有什麼儀器,哪些是必須的具體的流程是什麼
污水處理廠一般採用二級處理,其流程包括:
粗格柵—提升—細格柵—(粉碎)—沉砂—初次沉澱—生物處理(活性污泥法、生物濾池、氧化溝等)—二次沉澱—(後曝氣)—消毒—出水
當然現在有些處理廠還包括後續的深度處理和回用部分。
污水處理廠的實驗室主要做國家排放標准里說的各項指標的實驗,《污水綜合排放標准》(GB8978-1996):pH、懸浮物SS、BOD5、COD
氨氮、總氮TN、總磷TP等。
對於污水處理廠,常規測樣只監測進出水就可以了,只有在調試或者工藝有問題時才會監測各單元。
關於儀器,每種指標污染物都有自己的相關儀器(pH計、COD快速消解儀 、BOD5測試儀等),也可以採用簡單的分析化學實驗的方法測出,具體見國家環保總局編的《水和廢水監測分析方法》,對於污水處理廠用的一般比較簡單的國產設備,高校會有更好的研究設備。
你說的水質分析應該就是標准中提到的各項污染物質的監測分析方法,原子吸收只是其中某一個方法而已,一般用於測定離子含量(金屬等),污水處理廠不大可能有,很貴的。
關於具體的設備,你可以看看各個設備商的網站,都有具體介紹和使用手冊的。
7. 關於污水處理廠的儀表
污水處理過程的監視與控制系統由模型、感測器、局部調節器和上位監控策略等4個部分組成。其中,感測器是污水處理廠監控系統中最薄弱,也是最重要、最基礎的環節。日益嚴格的污水排放標准導致了污水處理工藝流程和裝備的復雜化,對用於污水處理過程監視與控制的感測器的性能也提出了更高的要求,促進了污水處理領域感測器技術的發展,一些適用於污水處理過程的新型感測器相繼問世。污水處理過程是復雜的生化反應過程,所涉及的儀器儀表種類繁多,多數感測器是污水處理過程所特有的,分別應用於不同的場合,反映一個或多個特定變數的狀態信息變化。
污水處理工藝一般由機械處理、生化處理和化學處理構成,其中涉及液相、固相、氣相三種物質成分。監視這些相態的儀表可以簡單地分為通用型和特殊性兩大類。
2、污水處理過程的通用儀表
通用測量儀表包括溫度、壓力、液位、流量、pH值、電導率、懸浮固體等感測器。
①厭氧消化過程由於常常實施溫度控制,溫度感測器顯得更加重要。典型的溫度測量元件是熱電阻
②壓力測量值常常用作曝氣和厭氧消化過程的報警參數。
③液位測量用於水位監視,通常採用浮標、差壓變送器、容量測量、超聲水位檢測等方法測量。
④流量監測儀表主要有堪板、轉子流量計、渦輪式流量計、靶式計量槽、電磁流量計、超聲波流量計等。
⑤pH值是生化過程中的一個重要變數,更是厭氧消化和硝化過程的關鍵值,通常在污水處理廠都安裝有pH電極浸人污泥中,通過不同的清潔策略可以實現長期免維護。對於具有高度緩沖能力的廢水,pH值測量對過程變化可能不敏感,因此不適合於過程監督與控制,這種情況可以用碳酸鹽測量系統代替。
⑥電導率感測器用於監視進水成分的變化,同時也是化學除磷控制策略的基礎。
⑦傳統的生物量測量是根據懸浮粒子對入射光的散射及吸光度進行估計。隨著靈敏的光檢測儀的出現,能夠自動進行光效應測量的感測器得以問世。大多數商業感測器使用了一個發射低可視光或紅外光的光源,在這個區域內大多數介質表現低吸光度。生物量濃度也可根據超聲波在懸浮物和微生物之間游離溶液的速度差確定。
3、厭氧消化過程中的感測器
生物氣流量的測量在厭氧消化過程中得到廣泛採用,它可以表示反應器的總體活性。近年來一些專用技術被用來監視氣體成分。典型的實驗室方法是洗瓶分離方法,根據進瓶前和出瓶後的流量比可以確定氣體成分。例如,鹼洗瓶將能夠收集所有的C02、H2S而允許CH4通過。更專業的氣體分析儀可以直接監視氣體成分含量,如紅外吸收測量儀用來確定C02和CH4含量,專用氫分析儀也已基於化學電源研製而成。氣相H2S測量儀可以通過監視硫化物對鉛剝離的反應來確定H2S含量。
基於氣體分析的監視系統的主要問題是不能直接預測液相中相應氣體的濃度。可以直接測量溶解氫的浸入式感測器已經研製成功。燃料電池是此種感測器的核心。H2S和CH4的直接測量儀器至今未見報道。
pH測量不容易對不平衡厭氧消化槽進行檢測,特別是當混合液的鹼度高時。這種情況下可對混合液體中C02和碳酸鹽進行測量。鹼度主要取決於碳酸鹽緩沖物,因此常常被用於厭氧消化的控制策略中。碳酸鹽監視器已被開發應用於實際厭氧消化過程。
估計碳酸鹽鹼度的基本原理有兩個。其一為滴定法,先進的在線滴定感測器可以同時監視氨、碳酸鹽等不同的成分。對鹼度進行在線確定的另一方法基於對樣品酸化而得到的氣態C02的定量。可以採用氣體流量計測量所產生的氣體的體積。
所有的生物活性都可用熱量的產生來表徵。通過熱量計對熱量的測量可以直接洞察生物過程變化。污水處理過程首選的是流量熱量計。
揮發性脂肪酸(VFA)是厭氧消化過程最重要的中間產物。他們的聚集會引起pH值的降低而導致過程厭氧消化過程的失敗。通常通過VFA濃度監視作為過程性能指示,但很少實施在線感測器。最先進的測量儀器包括氣相色譜儀或高壓液相色譜儀。傅立葉變換紅外光譜儀(FT-IR)作為在線多參數感測器可以同時提供COD、TOC、VFA等參數的測量。FT-IR不需要添加任何化學品,且只需要很少的維護,但其校準比較困難。更具可靠性的測量是採用滴定計通過兩步滴定或滴定反滴定提供采樣中的VFA含量。
生物感測器近年來在污水處理行業得到發展應用。VFA分析儀可以決定消化液體中VFA濃度;MAIA生物感測器可對代謝活性進行測量;RANTOX生物感測器用於檢測即將來臨的有機物過載及毒性負載。
4、活性污泥過程中的感測器
氧在活性污泥過程中起著非常重要的作用,且相關的曝氣費用約佔全部運行費用的40%,因此氧感測器成為廢水處理廠最廣泛的測量監視儀表。氧測量基於液體中擴散氧的電化學反應。溶解氧(DO)感測器是可靠准確的測量儀表,但必須謹慎選擇合適的測量位置,並防止結垢。目前自動清潔系統已經相當普遍,一些裝備清潔系統並可進行自校準的溶解氧感測器已有應用。DO感測器被廣泛用於曝氣過程的控制,節省了大量投資,所獲得的信息也可用於監視任何活性污泥處理過程。
呼吸量是對活性污泥呼吸速率的測量與解釋,定義為在單位時間內單位體積活性污泥中微生物所消耗的氧。它是表徵廢水和污泥動力學的常用工具。呼吸計實質上是一個反應器,測量結果易受實驗條件變動的影響。
廢水的生物可降解成分通過離線測量生物需氧量(BOD5)的標准方法獲得。BOD5是5天內有機溶質生物氧化所需溶解氧量。BOD5實驗不適於自動監視和控制,因為完成實驗需要較長時間,且很難達到一致的准確測量。廢水負載的在線測量根據短期BOD估計實現。目前使用的在線BODst方法有兩種:呼吸測量儀和微生物感測器。Vanrolleghem等提出的呼吸測量感測器RODTOX能夠監視BODst和廢水潛在毒性。該感測器有由一個恆定曝氣、完全混合的批反應器構成,內含10升污泥,可以得到大動態范圍內BODs。微生物感測器由固化電池、薄膜和一個溶解氧探測儀組成,最適合包含多種微生物的活性污泥系統。為了維護其功效,微生物BOD感測器需要精心維護與儲藏。大多數微生物BOD感測器壽命較短,從幾天到幾個月。
廢水處理廠最廣泛監視的變數是化學需氧量COD。COD自動監測儀可以每隔1~2小時進行一次自動監測,根據氧化分解的條件分為酸性法監測儀和鹼性法監測儀。COD實驗的主要限制是不能區分可生物降解和惰性有機物。
TOC表示污水中總有機碳的含量,也是表徵水體受有機物污染程度的一個指標。TOC測量的主要原理是將有機碳轉化為C02,隨後在氣相中測量這種產物,據此求出水相中有機碳濃度。典型的測量儀器是紅外線抽氣分析儀。TOC被認為是一個很好的監視參數,特別是監視排水質量。
許多廢水成分吸收紫外光。紫外線的吸收與廢水中的有機物有著密切的關系。紫外線吸光度自動監測儀引人廢水處理系統用於檢測水污染程度或評價排放質量。最近10年,光學技術取得顯著進步,使遠程與多點測量成為可能,大大方便了污水處理過程監視的實施。紅外光譜測量對於TOC、COD、BOD等特殊參數的估計與在線監視具有很大潛力。紅外光譜儀的主要缺點是光電池成分的結垢會引起靈敏度的降低,需要頻繁重校。
8. 污水處理一般採用什麼方法
更多論文請參見http://www.cnlunwen.net 發郵件索取
1 污水處理廠多環麝香污染物的分布特徵及去除途徑的初步研究
2 污水處理出水水質軟測量演算法與虛擬儀器的集成應用研究
3 利用粉煤灰處理生活污水
4 基於ASM1模型改善城市污水處理廠運行工況與效果的研究
5 基於現場匯流排的污水處理自動控制系統的研究
6 DCS污水處理系統及其性能分析
7 工業乙太網及其在污水處理行業的應用研究
8 小城鎮污水人工快速滲濾法處理試驗研究
9 城市污水深度處理及地下回灌的試驗研究
10 負載型光催化劑的制備及在污水深度處理中的應用
11 中低溫度下厭氧處理城市污水及污泥顆粒化的研究
12 基於超微孔曝氣多功能氧化溝的污水處理系統
13 活性污泥法污水處理過程智能建模及模擬研究
14 張家口市主城區污水處理廠配套管網工程建設與管理研究
15 紅樹植物人工濕地處理生活污水的凈化效應及其機理研究
16 自旋傳質填料生物膜反應器處理城市污水的試驗研究
17 基於神經網路的污水處理水質預測研究 高
18 膜生物反應器處理生活污水研究
19 曝氣生物濾池深度處理城市污水的初步研究
20 基於模糊PID控制策略的污水處理自動化監控系統的研究
小城鎮污水人工快速滲濾法處理試驗研究
【英文題名】 Study on Treatment of Wastewater from Small Township by a Constructed Rapid Infiltration System
【論文級別】 碩士
【中文關鍵詞】 人工快速滲濾; 小城鎮; 污水; 去除率; 農業利用;
【英文關鍵詞】 Constructed Rapid Infiltration System; township; wastewater; removing rate; agricultural reuse;
【中文摘要】 隨著小城鎮的快速發展,水污染和水資源缺乏問題越來越突出。本文在大量查閱文獻資料的基礎上,對小城鎮污水處理工藝和污水特性進行了調研和監測,針對小城鎮污水特點和常規處理系統投資高等問題,根據污水處理和利用技術發展趨勢,首次開展小城鎮污水的人工快速滲濾處理及利用的試驗研究,試驗考慮了影響人工快速滲濾系統運行效果的幾個主要因素,包括填料比(土砂比1:1、2:1和3:1)、填料厚度(80cm和100cm)、濕干比(1:1、1:2、1:3和1:5)及運行周期的長度(進水時間小於1天、等於1天和3天)等,進行了共十種工況的試驗,對人工快速滲濾系統處理小城鎮污水的效果進行了探索。同時還對人工快速滲濾系統出水進行了蔬菜灌溉試驗。研究結果表明: 1.人工快速滲濾系統對COD和總磷的去除效果較好,其最高去除率分別可達73.19%±1.78%和94.30%±2.31%;人工快速滲濾系統對總凱氏氮和氨氮的去除效率在濕干比1:1和1:2時為50%左右,在濕干比1:3和1:5是低於20%,這種處理趨勢符合正在制定的《城市污水再生利用農田灌溉用水水質國家標准》。 2.經檢驗,土砂比2:1和3:1的柱子都比較適合於處理CO...
小城鎮污水人工快速滲濾法處理試驗研究
引言 10-11
第一章 緒論 11-19
1.1 快速滲濾法的概述 11-12
1.2 快速滲濾法的研究和應用現狀 12-16
1.3 污水農業利用的研究和應用現狀 16-17
1.4 本文的研究內容和意義 17-19
第二章 小城鎮污水水質測定與分析 19-25
2.1 試驗目的 19
2.2 試驗材料 19
2.3 試驗方法 19-23
2.4 小結 23-25
第三章 人工快速滲濾法處理小城鎮污水試驗研究 25-55
3.1 填料厚度對人工快速滲濾系統運行效果的影響 25-32
3.2 濕干比對人工快速滲濾系統運行效果的影響 32-41
3.3 周期長度對人工快速滲濾系統運行效果的影響 41-52
3.4 試驗結果討論 52-55
第四章 人工快速滲濾系統出水用作蔬菜灌溉水的初步試驗研究 55-65
4.1 試驗目的 55
4.2 試驗材料與方法 55-56
4.3 試驗結果討論 56-64
4.4 小結 64-65
第五章 結論與進一步工作設想 65-67
5.1 結論 65
5.2 存在的問題 65-66
5.3 進一步的工作設想 66-67
參考文獻 67-73
致謝 73-75
作者簡歷 75
利用粉煤灰處理生活污水
【英文題名】 Study on the Fly Ash in the Treatment of Municipal Waste Water
【論文級別】 碩士
【中文關鍵詞】 粉煤灰; 生活污水; 吸附;
【英文關鍵詞】 fly ash; municipal waste water; absorption;
【中文摘要】 藉助光學顯微鏡、掃描電子顯微鏡、X 衍射儀分析等方法對粉煤灰礦物組成及理化特性進行了系統研究。從實驗結果可以看出,陡河發電廠粉煤灰粒度較細,而且粉煤灰中含有大量氧化硅、氧化鋁,能提供大量Si、Al 等活性點,有利於化學吸附的順利進行。說明,粉煤灰是一種性能良好的水處理劑。為了進一步了解粉煤灰的吸附性能及對生活污水中COD 的去除效果,分別進行了靜態吸附實驗和動態吸附實驗,對粉煤灰的粒度、投加量、溫度等因素進行了分析,確定粉煤灰處理生活污水時靜態吸附平衡時間為2.5h,化學耗氧物質在粉煤灰上的吸附等溫式為:q=0.435c~(0.576)。最佳工藝條件為:進水速度為4ml/min,粉煤灰粒度為0.048mm-0.056mm,粉煤灰與生活污水體積比為1:1.25,此時COD 的去除率為97%左右。按照有關國標規定,處理後的出水可作為綠化、洗車、沖廁等用水再次加以利用。利用粉煤灰處理生活污水,既可以有效地利用粉煤灰,還可以緩解城市用水緊張的局面,並能達到資源綜合利用、以廢治廢的目的。既具有環境意義,又具有經濟效益。
【英文摘要】 The study analysis the chemical and physical character of fly ash.The experiments of thisstudy consist of static absorption experiments and dynamic absorption experiments. The timeof saturation absorption of fly ash is 2.5h. And the absorption isothermal formula, which ofthe fly ash treating municipal waste water, is q=0.435c0.576. In the process of static absorption, the COD removal rate is markedly influenced by theconcentration of waste water and the grain size of fly ash. And the quantity of fly ash al...
利用粉煤灰處理生活污水
摘要 4-5
Abstract 5-12
引言 12-13
1 文獻綜述 13-23
1.1 粉煤灰綜合利用現狀 13-15
1.1.1 國外粉煤灰綜合利用現狀 13
1.1.2 國內粉煤灰綜合利用現狀 13-15
1.2 生活污水的特性及處理現狀 15-18
1.2.1 生活污水的特性 15-16
1.2.2 生活污水處理現狀及發展趨勢 16-18
1.3 粉煤灰在水處理中的應用現狀 18-23
1.3.1 處理生活污水 18-19
1.3.2 處理印染、染料廢水 19-20
1.3.3 處理焦化污水 20
1.3.4 處理含重金屬污水 20-21
1.3.5 處理含氟、含磷污水 21
1.3.6 處理造紙污水 21-23
2 粉煤灰的理化特性 23-31
2.1 粉煤灰的礦物組成 23-25
2.2 粉煤灰的化學性質 25-27
2.3 粉煤灰的物理性質 27-31
3 實驗方案 31-37
3.1 實驗內容 31-32
3.1.1 粉煤灰吸附特性研究 31
3.1.2 吸附實驗 31-32
3.2 主要實驗設備及測定方法 32-37
3.2.1 實驗設備及葯品 32
3.2.2 實驗中需要測定的指標及測定方法 32-37
4 粉煤灰吸附實驗 37-65
4.1 粉煤灰吸附特性研究 37-45
4.1.1 測定粉煤灰吸附平衡時間 37-38
4.1.2 測定粉煤灰吸附等溫式 38-43
4.1.3 粉煤灰與活性炭吸附性能比較 43-45
4.2 靜態單因素吸附實驗 45-51
4.2.1 粉煤灰粒度對吸附的影響 45-46
4.2.2 粉煤灰投加量對吸附的影響 46-47
4.2.3 生活污水的初始濃度對吸附的影響 47-48
4.2.4 pH 值對粉煤灰吸附性能的影響 48-50
4.2.5 溫度對粉煤灰吸附的影響 50-51
4.3 靜態正交吸附實驗 51-54
4.3.1 因素水平表 51-52
4.3.2 正交實驗確定最佳實驗條件 52
4.3.3 計算極差確定影響因素的主次關系 52
4.3.4 畫極差趨勢圖確定最佳實驗條件 52-53
4.3.5 計算方差確定影響因素的顯著性 53-54
4.4 動態單因素吸附實驗 54-58
4.4.1 粉煤灰柱高對吸附的影響 54-55
4.4.2 粉煤灰粒度對吸附的影響 55-56
4.4.3 粉煤灰與生活污水的體積比對吸附的影響 56-57
4.4.4 生活污水進水速度對吸附的影響 57-58
4.5 動態正交吸附實驗 58-62
4.5.1 因素水平表 58-59
4.5.2 正交實驗確定最佳實驗條件 59-60
4.5.3 計算極差確定影響因素的主次關系 60
4.5.4 畫極差趨勢圖確定最佳實驗條件 60
4.5.5 計算方差確定影響因素的顯著性 60-61
4.5.6 驗證實驗 61-62
4.6 粉煤灰處理污水的機理分析 62-65
4.6.1 吸附機理 63-64
4.6.2 絮凝機理 64
4.6.3 沉澱機理 64
4.6.4 過濾機理 64-65
結論 65-66
參考文獻 66-68
致謝 68-69
導師簡介 69-70
作者簡介 70-71
學位論文數據集 71
參考資料:http://www.cnlunwen.net
9. 淮北市污水處理廠
淮北市排水有限公司隸屬淮北市建設委員會,設計總規模為日處理12萬噸城市污水,佔地9公頃,服務面積38平方公里,服務人口36萬。其中已投入運行4年的一期工程8萬噸/日,處理工藝採用卡魯賽爾2000型二級生化處理。總投資為11859萬元,全套引進德國設備,全部處理設備均可遠程集中控制。目前日處理污水7萬噸,出水水質達到國家二級排放標准。配套管網總投資14166.90萬元,設計收水能力18萬噸/日,服務范圍37.14平方公里。污水管網總長98.95公里,中途設提升泵站4座。二期擴建規模為4萬噸/日,總投資5400萬元,已被列入省「十五」計劃和國家「南水北調」東線輔助項目。中水回用總規模為6萬噸/日,設計總投資7867.78萬元,建設地點在公司南側,佔地面積2公頃。
該公司目前現有員工71人,其中黨員18人.
以上基本情況謹供參考。