A. 污水處理技術的基本信息
作者:柏景方 主編
出 版 社:哈爾濱工業大學出版社
出版時間:2006-7-1
版次:1頁數:456字數:642000印刷時間:2006-7-1開本:紙張:膠版紙印次:I S B N:9787560323022包裝:平裝
B. 污水處理知識
按污水來源分類,污水處理一般分為生產污水處理和生活污水處理。生產污水包括工業污水、農業污水以及醫療污水等,而生活污水就是日常生活產生的污水,是指各種形式的無機物和有機物的復雜混合物,包括:①漂浮和懸浮的大小固體顆粒;②膠狀和凝膠狀擴散物;③純溶液。
按污水的性質來分,水的污染有兩類:一類是自然污染;另一類是人為污染。當前對水體危害較大的是人為污染。水污染可根據污染雜質的不同而主要分為化學性污染、物理性污染和生物性污染三大類。污染物主要有::(1)未經處理而排放的工業廢水;(2)未經處理而排放的生活污水;(3)大量使用化肥、農葯、除草劑的農田污水;(4)堆放在河邊的工業廢棄物和生活垃圾;(5)水土流失;(6)礦山污水。
污水處理廠:有人調查100多座大處理廠,一半曬太陽呢,還有資金不足\成本高\效率低的,普遍效率不足70%,低的只有40%.
污水處理成本能耗情況:基本都是高能耗\低效率。
目前城市生活污水排放已是我國城市水的主要污染源,城市生活污水處理是當前和今後城市節水和城市水環境保護工作的重中之重,這就要求我們要把處理生活污水設施的建設作為城市基礎設施的重要內容來抓,而且是急不可待的事情 。
C. 污水處理站怎樣處理含氰廢水
處理含氰廢水的方法
除了氯氧化法、二氧化硫-空氣氧化法、過氧化氫氧化法、酸化回收法、萃取法已獨立或幾種方法聯合使用於黃金氰化廠外,生物化學法、離子交換法、吸附法、自然凈化法在國內外也有工業應用,由於報道較少,工業實踐時間短,資料數據有限,本章僅對這些方法的原理、特點、處理效果進行簡要介紹。
一、生物化學法
1、生物法原理
生物法處理含氰廢水分兩個階段,第一階段是革蘭氏桿菌以氰化物、硫氰化物中的碳、氮為食物源,將氰化物和硫氰化物分解成碳酸鹽和氨:
微生物
Mn(CN)n(n-m)-+4H2O+O2─→Me-生物膜+2HCO3-+2NH3
對金屬氰絡物的分解順序是Zn、Ni、Cu、Fe對硫氰化物的分解與此類似,而且迅速,最佳pH值6.7~7.2。
細菌
SCN-+2.5O2+2H2O→SO42-+HCO3-+NH3
第二階段為硝化階段,利用嗜氧自養細菌把NH3分解:
細菌
NH3+1.5O2→NO2-+2H++H2O
細菌
NO2-+0.5O2→NO3-
氰化物和硫氰化物經過以上兩個階段,分解成無毒物以達到廢水處理目的。
生物化學法根據使用的設備和工藝不可又分為活性污泥法、生物過濾法、生物接觸法和生物流化床法等等,國內外利用生物化學法處理焦化、化肥廠含氰廢水的報導較多。
據報道,從1984年開始,美國霍姆斯特克(Homestake)金礦用生物法處理氰化廠廢水,英國將一種菌種固化後用於處理2500ppm的廢水,出水CN-可降低到1ppm,是今後發展的方向。
微生物法進入工業化階段並非易事,自然界的菌種遠不能適應每升數毫克濃度的氰化物廢水,因此必須對菌種進行馴化,使其逐步適應,生物化學法工藝較長,包括菌種的培養,加入營養物等,其處理時間相對較長,操作條件嚴格。如溫度、廢水組成等必須嚴格控制在一定范圍內,否則,微生物的代謝作用就會受到抑制甚至死亡。設備復雜、投資很大,因此在黃金氰化廠它的應用受到了限制。但生物化學法能分解硫氰化物,使重金屬形成污泥從廢水中去除,出水水質很好,故對於排水水質要求很高、地處溫帶的氰化廠,使用生物法比較合適。
2、生物法的應用情況
國外某金礦採用生物化學法處理氰化廠含氰廢水。首先,含氰廢水通過其它廢水稀釋,氰化物含量降低到生化法要求的濃度(CN-<10.0mg/L)、溫度(10℃~18℃,必要時設空調),pH值(7~8.5)然後加入營養基(磷酸鹽和碳酸鈉),廢水的處理分兩段進行,兩段均採用Φ3.6×6m的生物轉盤,30%浸入廢水中以使細菌與廢水和空氣接觸,第一段用微生物把氰化物和硫氰化物氧化成二氧化碳、硫酸鹽和氨,同時重金屬被細菌吸附而從廢水中除去,第二段包括氨的細菌硝化作用,首先轉化為亞硝酸鹽,然後被轉化為硝酸鹽,第一段採用事先經過馴化的,微生物從工藝水中以兩種適應較高的氰化物和硫氰化物的濃度。第二段採用分離出來的普通的亞硝化細菌和硝化細菌,被附著在轉盤上的細菌的浮生物膜吸附重金屬並隨生產膜脫落而被除去,通過加入絮凝劑使液固兩相分開,清液達標排放,污泥排放尾礦庫。該處理裝置處理廢水(包括其它廢水)800m3/h,每個生物轉盤直徑3.6m,長6m。由波紋狀塑料板組成。該處理廠總投資約1000萬美元,其處理指標見表10-1。
表10-1 生物化學法處理含氰廢水效果
廢水名稱 廢水各組份含量(mg/L)
總CN- CN- SCN- Cu
處理前 3.67 2.30 61.5 0.56
處理後 0.33 0.05 0.50 0.04
3、生物化學法的特點
(一)優點
生物法處理的廢水,水質比較好,CN-、SCN-、CNO-、NH3、重金屬包括Fe(CN)64-均有較高的去除率,排水無毒,尤其是能徹底去除SCN-,是二氧化硫-空氣法、過氧化氫氧化法、酸化回收法等無法做到的。
(二)缺點
1)適應性差,僅能處理極低濃度而且濃度波動小的含氰廢水,故氰化廠廢水應稀釋數百倍才能處理,這就擴大了處理裝置的處理規模,大大增加了基建投資。
2)溫度范圍窄,寒冷地方必須有溫室才能使用。
3)只能處理澄清水,不能處理礦漿。
二、離子交換法
1950年南非開始研究使用離子交換法處理黃金行業含氰廢水。1960年蘇聯也開始研究,並在傑良諾夫斯克浮選廠處理含氰廢水並回收氰化物和金。
1970年工業裝置投入運行,取得了較好的效果,1985年加拿大的威蒂克(Witteck)科技開發公司開發了一種處理含氰廢水的離子交換法,不久又成立了一個專門推廣該技術的公司,叫Cy-tech公司,離子交換法處理進行研究,取得了許多試驗數據,並已達到了工業應用的水平。
1、離子交換法的基本原理
離子交換法就是用離子交換樹脂吸附廢水中以陰離子形式存在的各種氰化物:
R2SO4+2CN-→2R(CN)2+SO42-
R2SO4+Zn(CN)42-→R2Zn(CN)4+SO42-
R2SO4+Cu(CN)32-→R2Cu(CN)3+SO42-
2R2SO4+Fe(CN)64-→R4Fe(CN)6+2SO42-
Pb(CN)42-、Ni(CN)42-、Au(CN)2-、Ag(CN) 2-、Cu(CN)2-等的吸附與上述類似,硫氰化物陰離子在樹脂上的吸附力比CN-更大,更易被吸附在樹脂上。
R2SO4+2SCN-→2RSCN
在強鹼性陰離子交換樹脂上,黃金氰化廠廢水中主要的幾種陰離子的吸附能力如下:
Zn(CN)42->Cu(CN)32->SCN->CN->SO42-
樹脂飽和時,如果繼續處理廢水,新進入樹脂層的Zn(CN)42-就會將其它離子從樹脂上排擠下來,使它們重新進入溶液,但即使繼續進行這一過程,樹脂上已吸附的各種離子也不會全部被排擠下來,各種離子在樹脂上的吸附量根據各種離子在樹脂上的吸附能力以及在廢水中的濃度不同有一部分配比。對於強鹼性樹脂來說,這種現象十分明顯,具體表現在流出液的組成隨處理量的變化特性曲線上。各組分當被吸附力強於它的組分從樹脂上排擠下來時,其流出液濃度會出現峰值。
不同的弱鹼樹脂具有不同的吸附特性。因此,對不同離子的吸附力也有很大差別,研究用離子交換法處理含氰廢水的一個重要任務就是去選擇甚至專門合成適用於我們要處理的廢水特點的樹脂,否則樹脂處理廢水的效果或洗脫問題將難以滿足我們的需要。難以工業化應用。
2、離子交換法存在的問題及解決途徑
離子交換法存在的問題主要是樹脂的中毒問題,主要是吸附能力強於氰化物離子的硫氰化物、銅氰絡合物和鐵氰絡合物。由於上述物質吸附到樹脂上,使樹脂的洗脫變得較為復雜甚至非常困難。
(一)硫氰化物
對於大部分金氰化廠來說,廢水中含有100mg/L以上的SCN-,其中金精礦氰化廠廢水SCN-高達800mg/L以上,由於強鹼性陰離子交換樹脂對SCN-的吸附力較大,而且SCN-的濃度如此之高,使樹脂對其它應吸附而從廢水中除去的組分的吸附量大為降低,如Zn(CN)42-、Cu(CN)32-,同時,由於SCN-的飽和,會使CN-過早泄漏,導致離子交換樹脂的工作飽和容量過低。例如,當廢水中SCN-350mg/L時,其工作飽和容量(指流出液中CN-≤0.5mg/L條件)僅20倍樹脂體積,而且SCN-難以從樹脂上通過簡單的方法洗脫下來,這就限制了具有大飽和容量的強鹼性陰離子交換樹脂的應用,而弱鹼性陰離子交換樹脂飽和容量最高不過強鹼性樹脂的一半,從處理洗脫成本考慮,也不易使用,可見較高的SCN-濃度給離子交換樹脂帶來很大麻煩。如果從樹脂上不洗脫SCN-,那麼流出液CN-不能達標,即使不考慮CN-的泄漏,樹脂對其它離子的工作容量也減少。
(二)銅
盡管樹脂對Cu(CN)32-的吸附力不如Zn(CN)42-大,但它的濃度往往較高,在強鹼樹脂上的飽和容量約8~35kg/m3,甚至更高,但用酸洗脫樹脂上的氰化物時,銅並不能被洗脫下來,而是在樹脂上形成CuCN沉澱,為了洗脫強鹼樹脂上的銅,必須採用含氨洗脫液洗脫,使銅溶解,形成Cu(NH3)42-或Cu(NH3)2+而洗脫下來,這就使工藝復雜化,尤其是洗脫液的再生也不夠簡便。
(三)亞鐵氰化物離子
Fe(CN)64-盡管在樹脂上吸附量不大,但在用酸洗脫樹脂上氰化物和鋅時,會生成Zn2Fe(CN)6、Fe2Fe(CN)6、Cu2Fe(CN)6沉澱物,而使樹脂呈深綠至棕黑色,影響樹脂的再生效果,如果專門洗脫Fe(CN)64-,盡管效果好,可是,洗脫液再生等問題均使工藝變得更長,操作更復雜。
3、技術現狀
根據國產強鹼樹脂的上述特點,提出二種工藝:一是用強鹼性陰離子處理高、中濃度含氰廢水,旨在去除廢水中的Cu、Zn,廢水不達標但由於Cu、Zn的大為減少而有宜於循環使用。二是用強鹼性樹脂處理不含SCN-或SCN-濃度100mg/L以下的廢水,回收氰化物為主,處理後廢水達標外排。例如,在金精礦燒渣為原料的氰化廠用離子交換法處理貧液。把離子交換法用於這兩方面在技術和經濟上估計比用酸化回收法優越。最好的辦法是開發易洗脫再生的新型樹脂,國外的許多開發新型樹脂的報導介紹了吸附廢水中Fe(CN)64-、而且較容易被洗脫下來的樹脂,近年來,由於越來越重視三廢的回收,使人們十分重視使用離子交換法處理廢水使其達到排放標准同時使大多數氰化物得以回收並重新使用這類課題。
加拿大Witteck開發公司開發出的一種氰化物再循環工藝就是其中比較有代表性的一例,該公司為此成立了一個Cy-tech公司專門推銷這種工藝裝置。一份報導介紹,該工藝用於處理鋅粉置換工藝產生的貧液,使用強鹼性陰離子交換樹脂吸附重金屬氰化物,當流出液CN-超標時對樹脂進行酸洗,使用硫酸自下而上通過樹脂床即可使樹脂上的重金屬和氰化物被洗脫下來,其重金屬以陽離子形式存在於洗脫液中,洗脫液用類似於酸化回收法的裝置回收HCN,然後大部分洗脫液進行再生並重復用於洗脫。回收的NaCN用於氰化工段,少量洗脫液經過中和沉澱出重金屬離子後外排。據稱這種方法也可用於處理炭漿廠的尾漿,其工藝和樹脂礦漿法十分類似。Cy-tech公司認為該工藝經改進後也可消除尾礦庫排水中殘余氰化物及其它重金屬,該報導無詳細數據、資料以及樹脂的型號。
另一報導稱,這項工藝的關鍵是在廢水進入離子交換柱前,先完成一個化學反應(使游離CN-形成Zn(CN)42-),並在化學反應中應用一種催化劑,有關人士解釋說,如果沒有這個反應,廢水就不得不通過若干個交換柱提出那些無用的分子,從而增加了系統的成本和復雜性。
採用一段順流吸附裝置處理效果是CN-<0.5mg/L、各種重金屬的總和小於1mg/L,處理能力約720加侖/h,樹脂量約36加侖。
該試驗裝置大約需要處理3500加侖廢水才能使一個交換柱飽和,每隔一天對交換柱進行一次解吸,每月最大產渣量(重金屬沉澱物)也可裝入1隻45加侖的桶中,其廢水按所給數據估算重金屬總含量不大於50mg/L,估計重金屬絕大部分是鋅粉置換產生的Zn(CN)42-,該工藝裝置的投資與其它處理裝置相當。能在一年多的時間里靠回收氰化物而收回全部投資,該工藝由Cy-tech公司開始轉讓。但無工業應用的詳細報導。
我國對離子交換法處理氰化廠含氰廢水的研究主要有兩個目的,一是解決氰化—鋅粉置換工藝產生貧液的全循環問題,即從貧液中除去銅和鋅,為了達到較高的吸附容量,通常使用強鹼性陰離子交換樹脂, 當廢水中銅、鋅含量分別為140、100mg/L時,強鹼樹脂的工作吸附容量不小於15kg/m3和6.5kg/m3。飽和樹脂經酸洗回收氰化物並能洗脫部分鋅,然後用另一種洗脫劑洗脫銅,樹脂即可再生,而銅的洗脫劑需經再生方可重復使用,由於工藝較長目前尚無工業應用。
含氰廢水→過濾→離 子 交 換→(低濃度含氰廢水)返回浸出或處理
↓
(飽和樹脂)回收氰化物
↓ 再生樹脂返回使用
洗脫重金屬
重金屬回收
圖11-1離子交換法回收氰化物工藝
當然如果廢水中銅和SCN-極低時,樹脂的再生僅通過酸洗就
可完成,此條件下可保證離子交換工藝出水達標。無論是國內還是國外,其離子交換工藝原則流程大致相同,見圖11-1。
4、離子交換法的特點
(一)優點:
1)當廢水中CN-低於酸化回收法的經濟效益下限時,採用離子交換法由於氰化物和貴金屬具有較好的經濟效益,其處理效果優於酸化法,當廢水組成簡單時可排放。
2)投資小於酸化回收法
3)與酸化回收法相比,該方法葯耗、電耗小,金回收率高。
(二)缺點:
1)當廢水中SCN-含量高時,洗脫困難,樹脂的容量受到影響,處理效果變差,離子交換法的應用范圍受SCN-很大影響。
2)在洗脫氰化物過程中,很難洗脫銅,故需專門的洗脫方法和步驟,使工藝復雜化。
3)在酸洗過程中,Fe(CN)64-會在樹脂顆粒內形成重金屬沉澱物而使樹脂中毒。
4)對操作者的素質要求高。
三、吸附—回收法
前面已談過,離子交換為化學吸附,吸附力較強,故解吸困難,解吸成本高。近來,國外開發了用吸附樹脂、活性炭做吸附劑,從含氰礦漿或廢水中回收銅和氰化物的技術,已完成了半工業試驗。
1、吸附樹脂吸附—回收法
西澳大利亞一炭浸廠對液相中銅、氰化鈉濃度分別為85、158mg/L之氰尾進行了吸附─回收法半工業試驗,採用法國地質科學研究所開發的V912吸附樹脂,處理能力為10m3/d,處理後尾漿液相中游離氰化物(CN-)濃度小於0.5mg/L。飽和樹脂分兩級洗脫再返回使用,用金屬洗脫劑洗重金屬,用硫酸洗脫氰化物,洗脫液用與酸化回收法類似的方法回收氰化物。
試驗表明,當銅濃度增加時,處理成本增加較大。
以半工業試驗結果推算,建一座年處理能力100萬噸的裝置,在銅、氰化鈉濃度分別為100、300mg/L條件下,設備費為250萬加元。年回收銅122t,氰化鈉377t,年洗脫樹脂1700t次,洗脫每噸樹脂的消耗如下(單位:t):
H2SO4攭NaOH Na2S 水 動力
0.5 0.453 0.048 17.5m3 12.3kwh
2、活性炭吸附—回收法
活性炭具有吸附廢水中重金屬和氰化物的特性,這早已人所共知,國外早在十年前就有金礦試驗用來處理貧液中銅等雜質,使貧液全循環,但沒能解決洗脫再生問題。
近年來,西澳大利亞一個炭漿廠完成了用洗性炭從浸出礦漿中回收銅和氰化物的半工業試驗,採用加溫解吸法選擇性解吸銅,含銅解吸液在酸性條件下沉澱氰化銅,再把氰化銅用硫酸氧化為硫酸銅出售。酸性水中的HCN用鹼性解吸液吸收再用於解吸工藝中。
銅是氰化過程增加氰化物耗量的一個較大因素,從浸出礦漿中回收銅和氰化物不但避免了銅對浸出的影響,提高了金的浸出率,而且減少了氰化物的消耗,具有一定的經濟效益,這一技術在特定的條件下可用來做為貧液全循環工藝中的去除銅措施。
四、自然凈化法
黃金氰化廠除少數收購金精礦進行提金然後把氰渣做硫精礦出售而不設尾礦庫外,絕大部分礦山建有較大容量的尾礦庫(池)。氰化廠廢水在其內停留時間一般在1~3天,有個別尾礦庫,廢水可停留十天以上。由於曝氣、光化學反應,共沉澱和生物作用,氰化物的濃度逐漸降低,這種靠尾礦庫(池),降低氰化物含量的方法稱為自然凈化法。目前絕大部分氰化廠都把尾礦庫自然凈化法做為除氰的一種輔助手段,經廢水處理裝置處理後的廢水再經尾礦庫進行二級處理,排水氰含量進一步降低,由於這種方法沒有處理成本問題(尾礦庫的建設是為了沉降懸浮物和貯有尾礦),故對人們有很大的吸引力,甚至有些氰化廠建立了專門的自然凈化池以期使自然凈化法的處理效果更好,如何提高自然凈化法的處理效果,把目前做為輔助處理方法的自然凈化法單獨用來處理含氰廢水?這是一項很有意義的科研工作,許多科研人員都在深入研究這一課題。
1、自然凈化法的特點
由於使用自然凈化法的氰化廠不多,可靠的數據有限,其特點尚未充分暴露出來。
(一)優點
1)不使用葯劑,處理成本低。
2)與其它方法配合,可做為一級處理方法也可做為二級處理方法,可靈活使用。
3)無二次污染。
(二)缺點
1)對尾礦庫要求高,必須不滲漏,匯水面積要大。
2)受季節、氣候影響大,在寒冷地區效果差。
2、自然凈化法原理
已完成的研究表明,自然凈化法至少是曝氣、光化學反應、共沉澱和生物分解四種作用的疊加。自然,影響自然凈化法效果的因素也就是上述四種作用之影響因素的疊加。
(一)曝氣
含氰廢水與大氣接觸,大氣中的SO2、NOx、CO2就會被廢吸收,使廢崐水pH值下降。
CO2+OH-→HCO3-
SO2+OH攩-攪→HSO3-
隨著廢水pH值的下降,廢水中的氰化物趨於形成HCN:
CN-+H+→HCN(aq)
亞鐵氰化物會與重金屬離子形成沉澱物這一反應促使重金屬氰化物的解離,以Zn(CN)42-為例:
Zn(CN)42-+Fe(CN)64-+4H+→Zn2Fe(CN)6↓+4HCN(aq)
由於空氣中HCN極微,廢水中的HCN將傾向於全部逸入大氣中,從動力學角度考慮,HCN的逸出速度受如下因素影響:
1)廢水溫度,廢水溫度高,HCN蒸氣分壓高,有利於HCN逸出,而且水溫高,水的粘度小,液膜阻力減少。
2)風力,尾礦庫上方風力大,水的擾動劇烈,氣—液接觸面積增大,酸性氣體和HCN在氣相擴散速度加快,水體內HCN的液相擴散也加快,酸性氣體與水的反應加快。
3)尾礦庫匯水特性
尾礦庫匯水面積大,水層淺,使單位體積廢水與空氣接觸表面增大,風力對水體的攪動效果增大,有利於HCN的逸出和酸性氣體的吸收。
4)廢水組成
廢水中重金屬含量高時,HCN的形成和逸出由於受絡合物解離平衡的限制,速度明顯變慢。
5)廢水pH值
廢水pH值低,有利於重金屬氰絡物的解離和HCN的形成。
HCN全部從水中逸出需要較長時間,其道理與酸化回收相似,在1m深的水層條件下,表層氰化物濃度為0.5mg/L時,底層氰化物濃度15mg/L,可見HCN逸出之難度。
在曝氣過程中,空氣中的氧不斷地溶於廢水中,其傳質速率也受液相擴散阻力的影響,表層溶解氧濃度高,底部濃度低,溶解氧進入液相後,與氰化物發生氧化反應:
2Cu(CN)2-+0.5O2+3H2O+2H+→2Cu(OH)2↓+4HCN
2CN-+O2→2CNO-
CNO-+2H2O→CO32-+NH4+
含氰廢水在尾礦庫內,還會發生水解反應,生成甲酸銨,廢水溫度越高,反應速度越快:
HCN+H2O=HCO-ONH4
這些反應的總和就是曝氣的效果,為了提高曝氣效果,必須提高廢水溫度,廢水與空氣的接觸表面積,增大水體的攪動程度,這樣才能保證HCN迅速逸入空氣而氧迅速溶解於廢水中並和氰化物反應,曝氣法受季節地域影響較大。
(二)光化學反應
廢水中的各種氰化物在陽光紫外線的照射下,發生如下反應:
Fe(CN)64-+H2O→Fe(CN)53-·H2O+CN-
4Fe(CN)64-+O2+2H2O→4Fe(CN)63-+4OH-
4Fe(CN)64-+12H2O→4Fe(OH)3↓+12HCN+12CN-
亞鐵氰化物和鐵氰化物離子在光照下分解出遊離氰化物,文獻介紹在3~5小時的光照時間里,60%~70%的鐵氰化物分解、80%~90%的亞鐵氰化物分解。由於分解出的氰化物不會很快地被氧化,因而會造成水體氰化物含量增高,這就是地表水水質指標中要求用總氰濃度的原因之一。
分解出的游離氰化物不斷地被氧化,水解以及逸入空氣中,達到了降低廢水中氰化物濃度的目的。
逸入空氣中的HCN,在陽光紫外線作用下,與氧發生反應。
HCN+0.5O2→HCNO
夏季,反應時間約10分鍾,冬季約1小時,從這點看,HCN的逸出不會影響大氣的質量,許多焦化廠利用曝氣法處理含氰廢水,其氰化物揮發量比黃金行業多,而且大部分工廠位於城市,並未聞發生污染事故。
光化學反應與氣溫和光照強度有關,因此,夏季除氰效果遠比冬季好。
(三)共沉澱作用
廢水中亞鐵氰化物還會形成Zn2Fe(CN)6、Pb2Fe(CN)6之類的沉澱,與Cu(OH)2、Fe(OH)3、CaCO3、CaSO4等凝聚在一起,沉於水底從而達到了去除重金屬和氰化物的效果,沉澱效果受pH值和廢崐水組成的制約,pH值低時效果好。
(四)生物化學反應
當尾礦庫廢水氰化物濃度很低時,廢水中的破壞氰化物的微生物將逐漸繁殖起來,並以氰化物為碳、氮源,把氰化物分解成碳酸鹽和硝酸鹽。
生物化學作用受廢水組成和溫度影響,如果氰化物濃度高達100mg/L,那麼微生物就會中毒死亡,如果溫度低於10℃,則微生物不能繁殖,生化反應也不能進行。
綜上所述,自然凈化法的效果受地理位置(南、北方、高原、平原)、天氣(陰、晴、氣溫、風力)、尾礦庫(匯水面積、水深、水流速度)微生物,廢水組成(pH、氰化物濃度、重金屬濃度)廢水在尾礦庫內停留時間等諸因素的影響。至崐於上述因素對曝氣、光化學反應,共沉澱以及生化反應的影響程度,以及這四種除氰途徑哪個作用大,目前尚無定量的數據可供參考。某研究所提出的氰化物自凈數學模型如下:
C=C0e-kt
其中,k為常數,單位:小時;t為自然凈化時間(小時),C、C0分別為某時某刻氰化物濃度和原始氰化物濃度。當溫度在10~30℃范圍內時,式中k值在0.005~0.01范圍,由於k值僅反應了溫度,沒有反應其它眾多的因素,故無多大應用價值。
正因為自然凈化法受許多因素制約,其處理效果並不穩定,如果進入尾礦庫的崐廢水氰化物濃度低(<10mg/L)、廢水在尾礦庫停留時間長,排水有可能達標,大部分氰化廠把尾礦庫做為二級處理設施。然而近年來,由於氰化物處理費用增高,一些氰化廠正探索用尾礦庫做為氰化物的一級處理設施。
3、自然凈化法的實踐
某全泥氰化廠尾礦庫建在較厚(2~5m),黃土層的溝內,廢水無滲入地下水的可能,該地區乾燥少雨,年蒸發水量大於降雨量,故尾礦庫無排水,氰化物在尾礦庫內自然凈化,不再採用其它方法處理,節省了大量葯劑、費用,降低了選礦成本。
某全泥氰化廠尾礦庫不滲漏,含氰化物尾礦漿直接排入尾礦庫,經自然凈化再進行二級處理,使其達標排放,由於二級處理的是澄清水,而且氰化物濃度有較大的降低,故處理成本大幅度下降,處理效果好。
某浮選—氰化—鋅粉置換工藝裝置,其貧液用酸化回收法處理後,殘氰在5~20mg/L經浮選廢水(漿)稀釋後,氰化物含量在0.5~2范圍,進入尾礦庫自然凈化,外排水CN-<0.5mg/L。
某氰化廠採用酸化回收法處理貧液,其酸性廢水含氰5~10mg/L,在2m深的廢水池內,經20天的自然凈化,氰化物降低到0.5mg/L。
D. 用光學顯微鏡觀察污水處理生化系統細菌,目鏡和物鏡分別用多少倍的比較合適哪位師哥師姐知道謝謝
10×40應該可以看到了,有100的油鏡就更好了。但你的問題不在這里,大多數細菌不進行染色的話勢不可能看得到的。你可以去網上查一查細菌的簡單染色法,革蘭氏染色法也可以。
操作方法可以到網路之類的地方搜,網上肯定有。就用革蘭氏染色法就應該可以了。染料是結晶紫和番紅(復紅也可以)。
E. 污水處理中的tss是什麼
TSS就是總懸浮固體,TSS是英語(Total Suspended Solid或者Total Suspended Substance)的縮寫,即水質中的總懸浮物。
它是指水樣通過孔徑為0.45μm的濾膜截留在濾膜上並於103~105℃ 烘乾至恆重的固體物質,是衡量水體水質污染程度的重要指標之一,計量單位是mg/L。
(5)甘孜白玉縣光學污水處理擴展閱讀:
監測總固體懸浮物:影像數據選擇
廣義的影像數據分為光學影像和雷達影像,光學數據又分為多光譜影像、多時相影像、高光譜影像等。目前國內外對懸浮固體的遙感研究大多利用光學影像,其中大多影像數據都被選作懸浮固體的反演數據。
常見的多時相數據被廣泛的應用於不同時間尺度的懸浮固體空間分布分析上。是搭載於和衛星上的一個重要的感測器,其空間解析度最大可達到,一天可過境次,實時監測能力很強。
王繁等人曾利用資料反演杭州灣表層懸浮物濃度並對其短期變異進行研究。數據屬於中等解析度影像,相比於數據解析度有很大的提高。
F. 污水處理
【污水處理簡介】
按污水來源分類,污水處理一般分為生產污水處理和生活污水處理。生產污水包括工業污水、農業污水以及醫療污水等,而生活污水就是日常生活產生的污水,是指各種形式的無機物和有機物的復雜混合物,包括:①漂浮和懸浮的大小固體顆粒;②膠狀和凝膠狀擴散物;③純溶液。
按污水的性質來分,水的污染有兩類:一類是自然污染;另一類是人為污染。當前對水體危害較大的是人為污染。水污染可根據污染雜質的不同而主要分為化學性污染、物理性污染和生物性污染三大類。污染物主要有::(1)未經處理而排放的工業廢水;(2)未經處理而排放的生活污水;(3)大量使用化肥、農葯、除草劑的農田污水;(4)堆放在河邊的工業廢棄物和生活垃圾;(5)水土流失;(6)礦山污水。
污水處理[1]被廣泛應用於建築、農業,交通、能源、石化、環保、城市景觀、醫療、餐飲等各個領域,也越來越多地走進尋常百姓的日常生活。
[編輯本段]【處理程度劃分】
現代污水處理技術,按處理程度劃分,可分為一級、二級和三級處理。
一級處理,
主要去除污水中呈懸浮狀態的固體污染物質,物理處理法大部分只能完成一級處理的要求。經過一級處理的污水,BOD一般可去除30%左右,達不到排放標准。一級處理屬於二級處理的預處理。
二級處理,
主要去除污水中呈膠體和溶解狀態的有機污染物質(BOD,COD物質),去除率可達90%以上,使有機污染物達到排放標准。
三級處理,
進一步處理難降解的有機物、氮和磷等能夠導致水體富營養化的可溶性無機物等。主要方法有生物脫氮除磷法,混凝沉澱法,砂率法,活性炭吸附法,離子交換法和電滲分析法等。
整個過程為通過粗格柵的原污水經過污水提升泵提升後,經過格柵或者篩率器,之後進入沉砂池,經過砂水分離的污水進入初次沉澱池,以上為一級處理(即物理處理),初沉池的出水進入生物處理設備,有活性污泥法和生物膜法,(其中活性污泥法的反應器有曝氣池,氧化溝等,生物膜法包括生物濾池、生物轉盤、生物接觸氧化法和生物流化床),生物處理設備的出水進入二次沉澱池,二沉池的出水經過消毒排放或者進入三級處理,一級處理結束到此為二級處理,三級處理包括生物脫氮除磷法,混凝沉澱法,砂濾法,活性炭吸附法,離子交換法和電滲析法。二沉池的污泥一部分迴流至初次沉澱池或者生物處理設備,一部分進入污泥濃縮池,之後進入污泥消化池,經過脫水和乾燥設備後,污泥被最後利用。
G. 污水處理中的新工藝有哪些
污水處理新工藝主要有 貴州長城環保科技有限公司開發的導流曝氣生物濾池(CCB)。重慶楚天環保工程有限公司研製的光觸媒;波觸媒;雙觸媒。
導流曝氣生物濾池Conction Current Biofilter(簡稱CCB)使污水在同一個處理池內,完成曝氣→沉澱→二次曝氣→二次沉澱等過程,解決其它污水處理需要四個池子才能完成的工藝流程。特別是在連續進水條件下,實現進水→曝氣→沉澱→出水的間隙曝氣,同時,實現污泥迴流,整個運行沒有閑置,其優點較其它污水處理方法更為突出,處理效果尤為顯著,CCB污水處理設備是AB法、SBR法、A2O法、接觸氧化法以及兩曝兩沉,間隙曝氣等污水處理設備的更新換代產品。2009年11月,被國家科技部列為「創新項目」,項目代碼09C26215205564;2009年12月,國家環保部又將該產品列為「國家鼓勵發展的環境保護技術目錄」(環發【2009】146號);2010年5月,國家科技部、國家環保部、國家商務部、國家質量監督檢驗檢疫總局審查認定《導流曝氣生物濾池》為國家重點新產品,其編號為2010GR467010。
CCB在我國的北京、山東、河北、貴州、山西、四川、內蒙古、黑龍江、廣東、廣西、陝西、甘肅、寧夏、新疆、江蘇、吉林、河南、湖北、天津等地已有工程實例,案例設及生活、醫院、化工、屠宰、食品、亞麻、酒精、制葯等廢水處理,大量的應用證明:出水水質CODcr一般在20mg/L以下,最低5.95mg/L;BOD5一般在10mg/L以下,最低3.50mg/L;SS一般在20mg/L以下,最低6.55mg/L。
CCB污水處理設備充分借鑒SBR法、AO法、A2O法、氧化溝法、活性污泥法和生物濾池、生物轉盤、生物接觸氧化等生物膜法及厭氧消化、水解酸化、UASB等厭氧生物處理法的設計手法和二級或三級污水處理工藝而開發研製出來的集約化污水處理創新工藝技術。2005年,國家知識產權局審定為國家專利產品,專利號:ZL200420033672.4。
「光觸媒污水凈化設備」光觸媒污水凈化設備根據光化學和無聲放電原理,採用無聲放電技術,製取大量的活性氧,在輻射光照作用下,產生游離氧O•,O•與水反應生成•OH。同時還產生其他激態物質和自由基,加速鏈反應,反應速率比臭氧提高了5倍。能有效去除污水中的BOD5、CODcr、SS等多種理化指標,而且還能殺滅污水中的各種細菌病毒,處理後的效果優於國標,達到中水回用。
「波觸媒污水凈化設備」根據高頻聲化學法和無聲放電原理,促使活性氧充分分散與溶解,大大減少活性氧的投加量,並同時提高其氧化能力,進而藉助物化作用強化活性氧的分解,產生大量的自由基;廢水中的污染物亦可直接在產生的高溫高壓「空化」中分解,因此波觸媒凈化設備的氧化能力的強化作用不只是「高頻聲化學法」和「無聲放電法」兩者的簡單相加,而是質的飛躍。能有效去除污水中的BOD5、CODcr、SS等多種理化指標,而且還能殺滅污水中的各種細菌病毒,處理後的效果優於國標,達到中水回用。波觸媒污水凈化設備。
「雙觸媒廢水凈化設備」充分借鑒了光化學法、高頻聲化學法和無聲放電法三者的設計手法,使活性氧失去一個電子,生成極高的氧化電位,與有機污染物發生鏈式快速反應,致使廢水中的有害物質無選擇地氧化成CO2、H2O或礦物鹽,並能卓有成效地脫色、脫氮、除磷,其氧化能力是臭氧的十倍,新建污水處理工程採用該設備,大大節省佔地面積和一次性投資以及運行費用,舊污水處理工程採用該設備不用改造土建,就能完成污水處理升級, 是目前最理想的廢水凈化設備。
H. 污水處理工考證
第一選擇當然是《注冊環保工程師證》,但是考起來難度相當大,尤其不是相關專業的,考試內容:基礎11科,包括理論力學(靜力學、運動學、動力學)、材料力學(軸向拉伸與壓縮、剪切、扭轉、截面圖形的幾何性質、彎曲、應力分析、組合變形、壓桿穩定)、流體力學(流體靜力學、流體動力學、流動阻力與水頭損失等)、數學(高等數學、線性代數、解析幾何、概率與數理統計)、物理學(熱學、光學、波動學)、化學(物質結構、溶液、氧化還原與電化學、化學平衡、有機及高分子化學)、電工學(電磁學、電路知識、電動機與變壓器、模擬電子技術、數字電子技術)、計算機技術、信號與信息技術、工程管理基礎、法律法規等等;專業考試課選擇考試方向:固廢處理、廢水處理、大氣治理,任選其一。
推薦復習教材①天津大學出版《注冊環保工程師執業資格考試公共基礎考試復習教程》;②中國環境科學出版社《注冊環保工程師專業考試復習教材》。上述兩套教材均可在淘寶上買到。
前面說了,注冊環保工程師難考,厲害點的也得3年左右;所以就應該考慮好考的注冊《高級污水處理工》證書,國家注冊類,考試難度較低,很多培訓機構都能頒發。
建議先考個《高級污水處理工》,然後慢慢再考《注冊環保工程師證》。
最後,兄弟給分!敲了半天,完全原創,非CTRL_C CTRL_V一族。
I. 關於污水處理廠的儀表
污水處理過程的監視與控制系統由模型、感測器、局部調節器和上位監控策略等4個部分組成。其中,感測器是污水處理廠監控系統中最薄弱,也是最重要、最基礎的環節。日益嚴格的污水排放標准導致了污水處理工藝流程和裝備的復雜化,對用於污水處理過程監視與控制的感測器的性能也提出了更高的要求,促進了污水處理領域感測器技術的發展,一些適用於污水處理過程的新型感測器相繼問世。污水處理過程是復雜的生化反應過程,所涉及的儀器儀表種類繁多,多數感測器是污水處理過程所特有的,分別應用於不同的場合,反映一個或多個特定變數的狀態信息變化。
污水處理工藝一般由機械處理、生化處理和化學處理構成,其中涉及液相、固相、氣相三種物質成分。監視這些相態的儀表可以簡單地分為通用型和特殊性兩大類。
2、污水處理過程的通用儀表
通用測量儀表包括溫度、壓力、液位、流量、pH值、電導率、懸浮固體等感測器。
①厭氧消化過程由於常常實施溫度控制,溫度感測器顯得更加重要。典型的溫度測量元件是熱電阻
②壓力測量值常常用作曝氣和厭氧消化過程的報警參數。
③液位測量用於水位監視,通常採用浮標、差壓變送器、容量測量、超聲水位檢測等方法測量。
④流量監測儀表主要有堪板、轉子流量計、渦輪式流量計、靶式計量槽、電磁流量計、超聲波流量計等。
⑤pH值是生化過程中的一個重要變數,更是厭氧消化和硝化過程的關鍵值,通常在污水處理廠都安裝有pH電極浸人污泥中,通過不同的清潔策略可以實現長期免維護。對於具有高度緩沖能力的廢水,pH值測量對過程變化可能不敏感,因此不適合於過程監督與控制,這種情況可以用碳酸鹽測量系統代替。
⑥電導率感測器用於監視進水成分的變化,同時也是化學除磷控制策略的基礎。
⑦傳統的生物量測量是根據懸浮粒子對入射光的散射及吸光度進行估計。隨著靈敏的光檢測儀的出現,能夠自動進行光效應測量的感測器得以問世。大多數商業感測器使用了一個發射低可視光或紅外光的光源,在這個區域內大多數介質表現低吸光度。生物量濃度也可根據超聲波在懸浮物和微生物之間游離溶液的速度差確定。
3、厭氧消化過程中的感測器
生物氣流量的測量在厭氧消化過程中得到廣泛採用,它可以表示反應器的總體活性。近年來一些專用技術被用來監視氣體成分。典型的實驗室方法是洗瓶分離方法,根據進瓶前和出瓶後的流量比可以確定氣體成分。例如,鹼洗瓶將能夠收集所有的C02、H2S而允許CH4通過。更專業的氣體分析儀可以直接監視氣體成分含量,如紅外吸收測量儀用來確定C02和CH4含量,專用氫分析儀也已基於化學電源研製而成。氣相H2S測量儀可以通過監視硫化物對鉛剝離的反應來確定H2S含量。
基於氣體分析的監視系統的主要問題是不能直接預測液相中相應氣體的濃度。可以直接測量溶解氫的浸入式感測器已經研製成功。燃料電池是此種感測器的核心。H2S和CH4的直接測量儀器至今未見報道。
pH測量不容易對不平衡厭氧消化槽進行檢測,特別是當混合液的鹼度高時。這種情況下可對混合液體中C02和碳酸鹽進行測量。鹼度主要取決於碳酸鹽緩沖物,因此常常被用於厭氧消化的控制策略中。碳酸鹽監視器已被開發應用於實際厭氧消化過程。
估計碳酸鹽鹼度的基本原理有兩個。其一為滴定法,先進的在線滴定感測器可以同時監視氨、碳酸鹽等不同的成分。對鹼度進行在線確定的另一方法基於對樣品酸化而得到的氣態C02的定量。可以採用氣體流量計測量所產生的氣體的體積。
所有的生物活性都可用熱量的產生來表徵。通過熱量計對熱量的測量可以直接洞察生物過程變化。污水處理過程首選的是流量熱量計。
揮發性脂肪酸(VFA)是厭氧消化過程最重要的中間產物。他們的聚集會引起pH值的降低而導致過程厭氧消化過程的失敗。通常通過VFA濃度監視作為過程性能指示,但很少實施在線感測器。最先進的測量儀器包括氣相色譜儀或高壓液相色譜儀。傅立葉變換紅外光譜儀(FT-IR)作為在線多參數感測器可以同時提供COD、TOC、VFA等參數的測量。FT-IR不需要添加任何化學品,且只需要很少的維護,但其校準比較困難。更具可靠性的測量是採用滴定計通過兩步滴定或滴定反滴定提供采樣中的VFA含量。
生物感測器近年來在污水處理行業得到發展應用。VFA分析儀可以決定消化液體中VFA濃度;MAIA生物感測器可對代謝活性進行測量;RANTOX生物感測器用於檢測即將來臨的有機物過載及毒性負載。
4、活性污泥過程中的感測器
氧在活性污泥過程中起著非常重要的作用,且相關的曝氣費用約佔全部運行費用的40%,因此氧感測器成為廢水處理廠最廣泛的測量監視儀表。氧測量基於液體中擴散氧的電化學反應。溶解氧(DO)感測器是可靠准確的測量儀表,但必須謹慎選擇合適的測量位置,並防止結垢。目前自動清潔系統已經相當普遍,一些裝備清潔系統並可進行自校準的溶解氧感測器已有應用。DO感測器被廣泛用於曝氣過程的控制,節省了大量投資,所獲得的信息也可用於監視任何活性污泥處理過程。
呼吸量是對活性污泥呼吸速率的測量與解釋,定義為在單位時間內單位體積活性污泥中微生物所消耗的氧。它是表徵廢水和污泥動力學的常用工具。呼吸計實質上是一個反應器,測量結果易受實驗條件變動的影響。
廢水的生物可降解成分通過離線測量生物需氧量(BOD5)的標准方法獲得。BOD5是5天內有機溶質生物氧化所需溶解氧量。BOD5實驗不適於自動監視和控制,因為完成實驗需要較長時間,且很難達到一致的准確測量。廢水負載的在線測量根據短期BOD估計實現。目前使用的在線BODst方法有兩種:呼吸測量儀和微生物感測器。Vanrolleghem等提出的呼吸測量感測器RODTOX能夠監視BODst和廢水潛在毒性。該感測器有由一個恆定曝氣、完全混合的批反應器構成,內含10升污泥,可以得到大動態范圍內BODs。微生物感測器由固化電池、薄膜和一個溶解氧探測儀組成,最適合包含多種微生物的活性污泥系統。為了維護其功效,微生物BOD感測器需要精心維護與儲藏。大多數微生物BOD感測器壽命較短,從幾天到幾個月。
廢水處理廠最廣泛監視的變數是化學需氧量COD。COD自動監測儀可以每隔1~2小時進行一次自動監測,根據氧化分解的條件分為酸性法監測儀和鹼性法監測儀。COD實驗的主要限制是不能區分可生物降解和惰性有機物。
TOC表示污水中總有機碳的含量,也是表徵水體受有機物污染程度的一個指標。TOC測量的主要原理是將有機碳轉化為C02,隨後在氣相中測量這種產物,據此求出水相中有機碳濃度。典型的測量儀器是紅外線抽氣分析儀。TOC被認為是一個很好的監視參數,特別是監視排水質量。
許多廢水成分吸收紫外光。紫外線的吸收與廢水中的有機物有著密切的關系。紫外線吸光度自動監測儀引人廢水處理系統用於檢測水污染程度或評價排放質量。最近10年,光學技術取得顯著進步,使遠程與多點測量成為可能,大大方便了污水處理過程監視的實施。紅外光譜測量對於TOC、COD、BOD等特殊參數的估計與在線監視具有很大潛力。紅外光譜儀的主要缺點是光電池成分的結垢會引起靈敏度的降低,需要頻繁重校。