導航:首頁 > 污水處理 > 玉溪華寧縣電池污水處理

玉溪華寧縣電池污水處理

發布時間:2021-05-25 00:11:59

A. 鐵碳填料污水處理原理是什麼污水處理成本是多少

鐵碳填料污水處理原理:
工作原理
● 一般原理:微電解是基於電化學中的原電池反應.當鐵和炭浸入電解質溶液中時,由於Fe和C之間存在1.2V印染廢水處理前後 的電極電位差,因而會形成無數的微電池系統,在其作用空間構成一個電場.陽極反應產生的新生態二價鐵離子具有較強的還原能力,可使某些有機物還原,也可使某些不飽和基團(如羧基—COOH、偶氮基-N=N-)的雙鍵打開,使部分難降解環狀和長鏈有機物分解成易生物降解的小分子有機物而提高可生化性.此外,二價和三價鐵離子是良好的絮凝劑,特別是新生的二價鐵離子具有更高的吸附-絮凝活性,調節廢水的pH可使鐵離子變成氫氧化物的絮狀沉澱,吸附污水中的懸浮或膠體態的微小顆粒及有機高分子,可進一步降低廢水的色度,同時去除部分有機污染物質使廢水得到凈化.陰極反應產生大量新生態的[H]和[O],在偏酸性的條件下,這些活性成分均能與廢水中的許多組分發生氧化還原反應,使有機大分子發生斷鏈降解,從而消除了有機廢水的色度,提高了廢水的可生化性.
鐵炭原電池反應:
陽極:Fe - 2e → Fe2+ E (Fe/Fe2+) = 0.44V
陰極:2H+ + 2e → H2 E (H+/H2) = 0.00V
當有氧存在時,陰極反應如下:
O2 + 4H+ + 4e → 2H2O E (O2) = 1.23V
O2 + 2H2O + 4e → 4OH- E (O2/OH-) = 0.41V
● 一般微電解反應為:鐵原子與炭原子是緊挨著或分開形成原電池反應.這種鐵炭接觸不利於電子的轉移,電荷效 率較低,因此廢水中有機物的去除效率一般也較低.同時當鐵炭一旦分層將更不利於有機物的去除.
● 鐵炭包容式微電解反應為:鐵原子與炭原子是相互包容組成架構而形成的原電池反應.這種鐵炭接觸不存在鐵與炭的分層問題,因此更有利於電子的轉移,電荷效率較高,廢水中有機物的去除效率也較高.
鐵碳填料污水處理成本:
濰坊普茵沃潤環保科技有限公司鐵碳填料比重約1.2噸/立方,每方水處理成本約0.4-0.6元.
市場上同類產品比重約2.0-3.0噸/立方,使前期投資加大,因消耗過大,後續使用成本也遠高於新型鐵碳填料,因此客戶在選用鐵碳填料時,一定要進行多方位比較,最終選擇適合自己的產品.

B. 鐵碳填料污水處理原理是什麼污水處理成本是多少

鐵碳填料污水處理原理:
工作原理
● 一般原理:微電解是基於電化學中的原電池反應。當鐵和炭浸入電解質溶液中時,由於Fe和C之間存在1.2V印染廢水處理前後 的電極電位差,因而會形成無數的微電池系統,在其作用空間構成一個電場。陽極反應產生的新生態二價鐵離子具有較強的還原能力,可使某些有機物還原,也可使某些不飽和基團(如羧基—COOH、偶氮基-N=N-)的雙鍵打開,使部分難降解環狀和長鏈有機物分解成易生物降解的小分子有機物而提高可生化性。此外,二價和三價鐵離子是良好的絮凝劑,特別是新生的二價鐵離子具有更高的吸附-絮凝活性,調節廢水的pH可使鐵離子變成氫氧化物的絮狀沉澱,吸附污水中的懸浮或膠體態的微小顆粒及有機高分子,可進一步降低廢水的色度,同時去除部分有機污染物質使廢水得到凈化。陰極反應產生大量新生態的[H]和[O],在偏酸性的條件下,這些活性成分均能與廢水中的許多組分發生氧化還原反應,使有機大分子發生斷鏈降解,從而消除了有機廢水的色度,提高了廢水的可生化性。
鐵炭原電池反應:
陽極:Fe - 2e → Fe2+ E (Fe/Fe2+) = 0.44V
陰極:2H+ + 2e → H2 E (H+/H2) = 0.00V
當有氧存在時,陰極反應如下:
O2 + 4H+ + 4e → 2H2O E (O2) = 1.23V
O2 + 2H2O + 4e → 4OH- E (O2/OH-) = 0.41V
● 一般微電解反應為:鐵原子與炭原子是緊挨著或分開形成原電池反應。這種鐵炭接觸不利於電子的轉移,電荷效 率較低,因此廢水中有機物的去除效率一般也較低。同時當鐵炭一旦分層將更不利於有機物的去除。
● 鐵炭包容式微電解反應為:鐵原子與炭原子是相互包容組成架構而形成的原電池反應。這種鐵炭接觸不存在鐵與炭的分層問題,因此更有利於電子的轉移,電荷效率較高,廢水中有機物的去除效率也較高。
鐵碳填料污水處理成本:
濰坊普茵沃潤環保科技有限公司鐵碳填料比重約1.2噸/立方,每方水處理成本約0.4-0.6元。
市場上同類產品比重約2.0-3.0噸/立方,使前期投資加大,因消耗過大,後續使用成本也遠高於新型鐵碳填料,因此客戶在選用鐵碳填料時,一定要進行多方位比較,最終選擇適合自己的產品。

C. 手機鋰電池裡面的黑色粉末是什麼溶於水後,污水處理廠能處理嗎

鋰電池污水處理,找深圳長隆,可出完整方案,葯劑可寄樣品

D. 電池片污水處理高濃度氨氮廢水怎麼處理

1 氨氮的主要處理方法

根據濃度的不同,工業氨氮廢水可劃分為3 類〔3〕:(1)高濃度氨氮廢水:NH3-N>500 mg/L;(2)中等濃度氨氮廢水:NH3-N為50~500 mg/L;(3)低濃度氨氮廢水:NH3-N<50 mg/L。其中高氨氮濃度廢水一般來源於焦炭、鐵合金、煤的氣化、濕法冶金、煉油、畜牧業、化肥、人造纖維和白熾燈等生產過程。
目前,常用的脫氮方法包括氨吹脫法(空氣吹脫與蒸汽汽提)、生化法、折點氯化法、離子交換法和化學沉澱法。這些方法普遍具有工藝簡單、脫氮效果穩定可靠等特點,但也存在一定的局限性。
傳統生物脫氮技術是目前應用最廣泛的脫氮方法,但存在流程長、佔地面積大、處理成本高等問題。隨著人們對生物脫氮過程認識的深入,新的生物脫氮理論不斷涌現,包括同時硝化/反硝化〔4〕、亞硝酸型(短程)硝化/反硝化〔5〕、厭氧氨氧化〔6〕等,但目前這些理論應用於高濃度氨氮廢水處理的研究還很少〔7〕。氨吹脫法常用於高濃度氨氮廢水的預處理,但能耗大、運行成本高、出水氨氮仍偏高〔8〕。折點氯化法理論上可以完全去除廢水中的氨氮,但由於加氯量大、處理成本高、產物存在危害性等問題,不適合處理大量的高濃度氨氮廢水。離子交換法由於吸附劑用量大、再生難,一般協同其他工藝處理高氨氮廢水。化學沉澱法用葯量大、成本高,需要進一步開發廉價沉澱劑。
近年來隨著國家對氨氮排放要求越來越嚴格,高濃度氨氮廢水處理日益受到研究者重視。在原有處理方法基礎上的改進工藝不斷涌現。趙賢廣等〔9〕針對工業上高濃度氨氮廢水吹脫法處理存在的缺點,通過改進和優化氨氮吹脫塔的結構和填料,開發了一種新型循環再生復合酸氨吸收溶液,實現廢水中氨的資源化。中國科學院過程工程所、天津大學等單位合作開發出高濃度氨氮廢水資源化處理的全過程工藝和工業化應用裝置〔10〕。該技術通過精餾脫氨工藝量化設計,實現了工業高濃度氨氮廢水的資源化處理。此外,還有電化學法、催化濕式氧化法、反滲透法以及物化法與生化法聯用等技術,但由於處理成本高,多數用於高氨氮廢水的深度處理。
2 微波加熱的原理

微波是指頻率約在300 MHz~300 GHz,即波長為1 mm~1 m的超高頻電磁波。微波能被一些材料如水、碳、橡膠、食品、木材、濕紙等吸收,產生非常有效的即時深層加熱作用(內加熱)〔11〕。微波加熱技術與傳統加熱技術的不同之處在於使物體內部分子相互摩擦發熱,但不引起分子結構改變,是直接加熱物質內部的方法〔12〕。這種內加熱的原理是樣品接受微波輻照時,在電磁場的作用下主要發生離子傳導和偶極子轉動。一般情況下,兩種發熱方式(離子傳導和偶極子轉動)同時存在〔13〕。微波的內加熱作用可在不同的深度同時加熱,使加熱更快速、更均勻、無溫度梯度、無滯後效應等,從而大大縮短了加熱時間。劇烈的極性分子震盪可使化學鍵斷裂,從而導致污染物的降解。對於氨氮廢水而言,微波對NH3分子與H2O分子的選擇性加熱使它們之間產生壓力差,進一步促進NH3分子與H2O分子脫離。
近年來,研究者用微波加快化學反應時發現了許多有別於傳統加熱的特殊效應〔14〕。在這些特殊效應中,有些特殊效應不能用溫度的變化解釋。這些難以用溫度變化和特殊溫度分布來解釋的現象即「非熱效應」〔15〕,並逐漸成為人們爭論的焦點。

E. 微生物燃料電池研究中有哪些問題尚未解決

主要問題是成本和功率密度。

1 引言 微生物燃料電池(Microbial Fuel Cells,MFCs),是一種以微生物為陽極催化劑,將有機物中的化學能直接轉化為電能的裝置。1911年,英國植物學家Potter便發現細菌培養液可產生電流,這是關於微生物燃料電池的最早報道。近年來,MFC技術因其諸多優點及應用范圍的擴大,引起了世界各國研究者的高度關注。
毋庸置疑,微生物燃料電池(Microbial fuel cells,MFCs)是一種新興的高效的生物質能利用方式,它利用細菌分解生物質產生生物電能,具有無污染、能量轉化效率高、適用范圍廣泛等優點。因此MFCs逐漸成為現今社會的研究熱點之一。
2 微生物燃料電池的工作原理
圖1是典型的雙室結構MFcs工作原理示意圖,系統主要由陽極、陰極和將陰陽極分開的質子交換膜構成。陽極室中的產電菌催化氧化有機物,使其直接生成質子、電子和代謝產物,氧化過程中產生的電子通過載體傳送到電極表面。根據微生物的性質,電子傳送的載體可以為外源、與呼吸鏈有關的NADH和色素分子以及微生物代謝的還原性物質。陽極產生的H+透過質子交換膜擴散到陰極,而陽極產生的電子流經外電路循環到達電池的陰極.電子在流過外電阻時輸出電能。電子在陰極催化劑作用下。與陰極室中的電子接受體結合,並發生還原反應。

圖1 微生物燃料電池工作原理示意圖
下面以典型的葡萄糖為底物的反應為例說明MFCs的工作原理,反應中氧氣為電子受體,反應完成後葡萄糖完全被氧化。
陽極反應:
?_CHO?6HO?CO?24H?24e612622
陰極反應:
?_6O2?24H?24e?12H2O
總反應:
C6H12O6?6O2?6CO2?6H2O

3 微生物燃料電池的應用現狀
迄今為止,MFCs的性能遠低於理想狀態。制約MFCs性能的因素包括動力學因素、內阻因素和傳遞因素等。動力學制約的主要表現為活化電勢較高,致使在陽極或者陰極上的表面反應速率較低,難以獲得較高的輸出功率。內電阻具有提高電池的輸出功率的作用,主要取決於電極間電解液的阻力和質子交換膜的阻力。縮短電極間距、增加離子濃度均可降低內阻。不用質子交換膜也可以大大降低MFCs的內阻,這時得到的最大功率密度有質子交換膜的5倍,但必須注意氧氣擴散的問題。另一個重要制約因素為電子傳遞過程中的反應物到微生物活性位間的傳質阻力和陰極區電子最終受體的擴散速率。最終電子受體採用鐵氰酸鹽或陰極介體使用鐵氰化物均可以獲得更大的輸出功率和電流。另外,微生物對底物的親和力、微生物的最大生長率、生物量負荷、反應器攪拌情況、操作溫度和酸鹼度均對微生物燃料電池內的物質傳遞有影響。
當前針對微生物燃料電池主要研究其產電性能,同時由於其特殊的結構與原理,MFCs還有許多潛在應用領域,主要包括廢水處理、電助產氫、感測器三方面。
3.1 廢水處理
近年來,微生物燃料電池被嘗試用來處理富含生物可降解有機物的廢水,在廢水降解的同時產電。表3.1列舉了目前MFCs用於廢水處理的現狀。

微生物燃料電池用於污水處理的例子

此外,微生物燃料電池處理廢水具有諸多優點,還可與傳統厭氧、好氧工藝相結合,達到更好的處理效果。

3.2 電助產氫
微生物燃料電池由於輸出效率低,難以直接應用,而MFC電助產氫技術是較有前途的一種方式。其工作原理為:無氧條件下,對雙室MFC陰極施加一個遠小於水分解電壓的小電壓,可促進轉移到陰極的電子和質子結合生成氫氣,達到利用MFC系統產氫的目的。
微生物燃料電池電助產氫反應器的優點是陰極省略了MFC常用的電子受體——氫氣,可避免因氧氣通過質子交換膜向陽極擴散而影響反應器運行;同時該工藝產生的氫氣純度較高,可積累、儲存及運輸,推動了MFC技術的實際應用。
3.3 生物感測器
根據MFCs的工作原理,在一定濃度范圍內,MFCs的電流(或電壓)輸出與陽極的基質濃度有線性關系,因此可開發基於MFCs的感測器,最典型的是BOD5快速檢測。Lorenzo等以人工廢水為燃料構建型BOD5感測器,該感測器輸出功率與BOD5濃度有良好的線性關系,且有非常高的重復性和穩定性,可連續運行7個月。
除了作為BOD5感測器外,有研究者嘗試利用MFC型的感測器通過對UAFB中發
酵液pH和沼氣流速進行實時監測,實現對厭氧硝化過程動態變化的監測。還有研究者通過在MFCs的質子交換膜兩側添加2片微硅板作電流收集器,由電流變化來反映基質中的有毒化合物。這些研究都有助於擴大MFCs技術的應用領域。
4 微生物燃料電池技術發展前景
MFCs技術正在不斷成長並且已經在許多方面取得了重大突破。但是,由於其功率偏低,該技術還沒有實現真正的大規模實際應用。基於其產電性能的制約因素,今後的研究方向主要可歸納為以下幾點。
(1)深入研究並完善MFCs的產電理論。MFCs產電理論研究處於起步階段,電池輸出功率較低,嚴重製約了MFCs的實際應用。MFCs中產電微生物的生長代謝過程,產電呼吸代謝過程以及利用陽極作為電子受體的本質是今後的研究重點。
(2)篩選與培育高活性微生物。目前大多數微生物燃料電池所用微生物品種單一。要達到實際應用的目的,需要尋找自身可產生氧化還原介體的高活性微生物和具有膜結合電子傳遞化合物質的微生物。今後的研究應致力於發現和選擇這種高活性微生。
(3)優化反應器的結構;5建議;微生物燃料電池潛在的優點使研究者對其發展前景十分;(1)加強MFCs的機理研究,通過分析陽極微生物;(2)通過優化MFCs的結構、材料和運行方式等,;MFCs作為一種可再生的清潔能源技術正在迅速興起;力,同時也擴大了用來滿足我們對能源需求的燃料的多;7參考文獻;[1]姜秀華.微生物電池技術研究[D].科技資訊;[2]張靜,張寶

(3)優化反應器的結構。研究與開發單室結構和多級串聯微生物燃料電池,利用微生物固定化技術、貴金屬修飾技術等改善電極的結構和性能。選擇吸附性能好、導電性好的材料作為陽極,選擇吸氧電位高且易於撲捉質子的材料作為陰極。

5 建議
微生物燃料電池潛在的優點使研究者對其發展前景十分看好,但由於輸出功率較低,限制了在生產生活中的應用。因此,建議研究者主要從以下三方面對MFCs做進一步研究:
(1)加強MFCs的機理研究,通過分析陽極微生物確定電子產生和傳遞機理,實現對高效產電微生物的篩選和改造。
(2)通過優化MFCs的結構、材料和運行方式等,提高電子傳質速率,降低電壓損失,提高MFCs產電性能。嘗試MFCs的工程放大,實現實際應用。 6 結語
MFCs作為一種可再生的清潔能源技術正在迅速興起,並已逐步顯現出它獨有的社會價值和市場潛力。隨著研究的不斷深入以及生物電化學的不斷進步,MFCs必將得到不斷地推廣和應用。與微生物燃料電池相比,燃料電池目前使用存在著成本仍偏高, 利用率不太高的缺點,所以微生物電池有著廣闊的應用前景。與現有的其它利用有機物產能的技術相比,微生物燃料電池具有操作上和功能上的優勢:首先,它將底物直接轉化為電能,保證了具有高的能量轉化效率;其次,不同於現有的所有生物能處理,微生物燃料電池在常溫環境條件下能夠有效運作;第三,微生物燃料電池不需要進行廢氣處理,因為它所產生的廢氣的主要組分是二氧化碳,一般條件下不具有可再利用的能量;第四,微生物燃料電池不需要輸入較大能量,因為若是單室微生物燃料電池僅需通風就可以被動的補充陰極氣體;第五,在缺乏電力基礎設施的局部地區,微生物燃料電池具有廣泛應用的潛
力,同時也擴大了用來滿足我們對能源需求的燃料的多樣性。研究微生物電池是一件造福人類的偉大舉措,我們應該投入更多的人力和物力。

F. 化工廢水處理的廢水處理

化工廢水預處理物化工藝推薦:
一、 催化微電解處理技術
【技術背景】
有機廢水特別是高鹽高濃度有機廢水處理,一直是國內眾多環保工作者及管理部門關注的難題。隨著我國化學工業的快速發展,各種新型的化工產品被應用到各行各業,特別是醫葯、化工、電鍍、印染等重污染工業中,在提高產品質量、品質的同時也帶了日益嚴重的環境污染問題,主要表現在:廢水中有機污染物濃度高、結構穩定、生化性差,常規工藝難以實現達標排放,且處理成本高,給企業節能減排帶來極大的壓力。
【技術概述】
微電解技術是處理高濃度有機廢水的一種理想工藝,該工藝用於高鹽、難降解、高色度廢水的處理不但能大幅度地降低cod和色度,還可大大提高廢水的可生化性。該技術是在不通電的情況下,利用微電解設備中填充的微電解填料產生「原電池」效應對廢水進行處理。當通水後,在設備內會形成無數的電位差達1.2V 的「原電池」。「原電池」以廢水做電解質,通過放電形成電流對廢水進行電解氧化和還原處理,以達到降解有機污染物的目的。在處理過程中產生的新生態[·O H] 、[H] 、[O]、Fe2+ 、Fe3+等能與廢水中的許多組分發生氧化還原反應,比如能破壞有色廢水中的有色物質的發色基團或助色基團,甚至斷鏈,達到降解脫色的作用;生成的Fe2+ 進一步氧化成Fe3 +,它們的水合物具有較強的吸附- 絮凝活性,特別是在加鹼調pH 值後生成氫氧化亞鐵和氫氧化鐵膠體絮凝劑,它們的絮凝能力遠遠高於一般葯劑水解得到的氫氧化鐵膠體,能大量絮凝水體中分散的微小顆粒、金屬粒子及有機大分子.其工作原理基於電化學、氧化- 還原、物理以及絮凝沉澱的共同作用。該工藝具有適用范圍廣、處理效果好、成本低廉、處理時間短、操作維護方便、電力消耗低等優點,可廣泛應用於工業廢水的預處理和深度處理中。
【技術特點】
(1) 反應速率快,一般工業廢水只需要半小時至數小時;
(2) 作用有機污染物質范圍廣,如:含有偶氟、碳雙鍵、硝基、鹵代基結構的難除降解有機物質等都有很好的降解效果;
(3) 工藝流程簡單、使用壽命長、投資費用少、操作維護方便、運行成本低、處理效果穩定。處理過程中只消耗少量的微電解填料。填料只需定期添加無需更換,添加時直接投入即可。
(4)廢水經微電解處理後會在水中形成原生態的亞鐵或鐵離子,具有比普通混凝劑更好的混凝作用,無需再加鐵鹽等混凝劑,COD去除率高,並且不會對水造成二次污染;
(5)具有良好的混凝效果,色度、COD去除率高,同量可在很大程度上提高廢水的可生化性。
(6)該方法可以達到化學沉澱除磷的效果,還可以通過還原除重金屬;
(7)對已建成未達標的高濃度有機廢水處理工程,用該技術作為已建工程廢水的預處理,即可確保廢水處理後穩定達標排放。也可將生產廢水中濃度較高的部分廢水單獨引出進行微電解處理。
(8) 該技術各單元可作為單獨處理方法使用,又可作為生物處理的前處理工藝,利於污泥的沉降和生物掛膜
【適用廢水種類】
⑴.染料、化工、制葯廢水;焦化、石油廢水;
------上述廢水處理水後的BOD/COD值大幅度提高。
⑵. 印染廢水;皮革廢水;造紙廢水、木材加工廢水;
------對脫色有很好的應用,同時對COD與氨氮有效去除。
⑶. 電鍍廢水;印刷廢水;采礦廢水;其他含有重金屬的廢水;
------可以從上述廢水中去除重金屬。
⑷. 有機磷農業廢水;有機氯農業廢水;
------大大提高上述廢水的可生化性,且可除磷,除硫化物
二、新型催化微電解填料
【技術概述】
它由多元金屬合金融合催化劑並採用高溫微孔活化技術生產而成,屬新型投加式無板結微電解填料。作用於廢水,可高效去除COD、降低色度、提高可生化性,處理效果穩定持久,同時可避免運行過程中的填料鈍化、板結等現象。本填料是微電解反應持續作用的重要保證,為當前化工廢水的處理帶來了新的生機。
【產品關鍵創新點】
(1)由多元金屬熔合多種催化劑通過高溫熔煉形成一體化合金,保證「原電池」 效應持續高效。不會像物理混合那樣出現陰陽極分離,影響原電池反應。
(2)架構式微孔結構形式,提供了極大的比表面積和均勻的水氣流通道,對廢水處理提供了更大的電流密度和更好的催化反應效果。
(3)活性強,比重輕,不鈍化、不板結,反應速率快,長期運行穩定有效。
(4)針對不同廢水調整不同比例的催化成份,提高了反應效率,擴大了對廢水處理的應用范圍。
(5)在反應過程中填料所含活性鐵做為陽極不斷提供電子並溶解進入水中,陰極碳則以極小顆粒的形式隨水流出。當使用一定周期後,可通過直接投加的方式實現填料的補充,及時恢復系統的穩定,還極大地減少了工人的操作強度。
(6)填料對廢水的處理集氧化、還原、電沉積、絮凝、吸附、架橋、卷掃及共沉澱等多功能於一體。
(7)處理成本低,在大幅度去除有機污染物的同時,可極大地提高廢水的可生化性。
(8)配套設施可根據規模和用戶要求實現構築物式和設備化,滿足多種需求。
(9)規格:1cm*3cm (填料形式多樣,有顆粒球形、多孔柱形及其他,大小可定製)。
(10)技術參數:比重: 1.0噸/立方米,比表面積: 1.2 平方米/克, 空隙率: 65% ,物理強度:≧1000KG/CM2.
三、多相催化氧化處理技術
【技術概述】
該處理技術是環境領域新發展的一種技術,主要採用以羥基自由基為核心的強氧化劑,快速、無選擇性、徹底氧化環境中的各種有機污染物。羥基自由基與水中的溶解性有機物反應形成羥基自由基;在催化劑的催化下,羥基自由基對廢水中有機物進行氧化分解。該技術對CODcr去除、脫色以及提高廢水的可生化性有著顯著的效果。其色度、CODcr去除率可達75%-99%。在對農葯廢水、化工廢水、制葯廢水的實際應用中,該技術體現了很好的應用效果。
【適用范圍】
主要適用於:硝基苯、硝基酚、硝基甲苯、苯酚、苯胺類污水、苯甲醚污水;分散染料、陽離子染料、弱酸性染料類污水;合成醫葯、農葯類污水;獸葯類污水;精細化工類污水;合成樹脂類污水;含氰污水;含氟污水;含蒽污水;焦化污水和電鍍污水等。
化工廢水深度處理中水回用優化組合工藝:
(1) 預處理+UF+RO/NF 處理工藝
(2) MBR+UF/RO/NF處理工藝
工藝系統優點:
超濾系統優點:採用高分子材料的中空纖維膜,抗耐壓、抗污染、使用壽命長
佔地面積小、自動化程度高、
分離能力強、出水水質好
保證後續RO/NF系統的正常運行
RO/NF膜處理系統優點:RO系統採用抗污染反滲透膜、使用壽命長
鹽分、有機物、難降解化合物有效截留
出水水質適用於所有生產工藝
自動化程度高、運行成本低
膜-生物反應器工藝(MBR工藝)是膜分離技術與生物技術有機結合的新型廢水處理技術。它利用膜分離設備將生化反應池中的活性污泥和大分子有機物質截留住,分離出清水,實現生化反應與清水分離同步進行,省掉二沉池。
MBR緊湊簡潔單元結構特別適合於處理成份復雜、污染物濃度高的印染廢水。
MBR工藝的優點:處理效率高、出水水質好、污泥少
水力停留時間短、佔地面積小
易清洗、易更換、運行穩定、運行成本低
耐沖擊能力強、COD和色度去除效率高
應用領域:高濃度化工廢水、氯鹼行業廢水、農葯廢水、化工園區及污水處理廠、
含磷廢水處理、 含甲醛廢水處理

G. 浙江鋰電池污水處理公司有哪些

在日常生活中鋰電池越來越廣泛的應用,作為一種相對清潔的能源,它已經成為一個重要的產品。鋰電池在生產製造過程中會產生一定的廢水,主要來源為生產過程產生的生產廢水及地面、設備沖洗水,其主要成份有鈷酸鋰、NMP(甲基吡咯烷酮)、碳粉及有小分子有機物質酯類等。 這種廢水具有成分復雜、有一定毒性、難以生化等特點。
針對鋰電池廢水處理依斯倍環保研發出一套穩定的處理系統,使用多效蒸發器、MVR蒸發器針對鋰電行業廢水進行處理,設備自動化程度高,節省成本;易於完成自動控制,方便管理,操作簡單;設備的使用壽命可長達15年;抗沖擊負荷的能力強,出水水質穩定,污泥產量少且易於處理。

H. 下列人類行為中,不利於環境保護的是()A.推廣使用節電產品B.將廢舊電池深埋地下C.污水處理後再

A、推廣使用節電產品,可以減少化石燃料的使用,有利於環境保護,故A正確;
B、將廢舊電池深埋地下能嚴重污染水體和土壤,不利於環境保護,故B錯誤;
C、將污水處理後排放就不會有污染了,所以有利於環境保護,故C正確;
D、分類回收垃圾可以減少對環境的污染,節省資源,故D正確.
故選:B.

閱讀全文

與玉溪華寧縣電池污水處理相關的資料

熱點內容
福州長樂區光學水處理設備價格 瀏覽:971
崇左市電池軟化水設備 瀏覽:807
駐馬店平輿縣線路去離子水設備 瀏覽:997
廣西省制葯純水處理設備 瀏覽:534
寧德蕉城區食品廢水處理廠家 瀏覽:241
周口西華縣化工去離子水設備 瀏覽:913
平涼涇川縣電池水處理系統 瀏覽:781
鄂州梁子湖區食品水處理系統 瀏覽:635
紅河河口瑤族自治縣鍋爐去離子水設備 瀏覽:495
自貢富順縣電子純水處理設備 瀏覽:413
承德興隆縣電池廢水處理設備 瀏覽:911
寧德古田縣電子廢水處理設備 瀏覽:645
徐州泉山區電子去離子水設備 瀏覽:56
昌吉奇台縣食品污水處理 瀏覽:973
武漢漢陽區鍋爐水處理系統 瀏覽:299
長沙芙蓉區紡織廢水處理廠家 瀏覽:669
三門峽澠池縣食品水處理設備價格 瀏覽:371
長沙瀏陽市鍋爐純水處理設備 瀏覽:1
錦州黑山縣印染去離子水設備 瀏覽:920
來賓武宣縣印染水處理設備價格 瀏覽:426