⑴ 抽水处理技术的系统介绍
抽水处理技术是最早出现的地下水污染修复治理技术,也是地下水异位修复的代表性技术。自20世纪80年代开展地下水污染修复治理至今,地下水污染治理仍以抽水处理技术为主(图11.23)。
图11.23 抽水处理技术概念模型
抽水处理技术一般可分为两大部分:地下水动力控制过程和地上污染物处理过程。根据地下水污染范围和程度,在污染场地布置一定数量的抽水井,通过水泵将将受污染的地下水抽取上来,然后利用地面净化设备进行地下水污染治理。在抽水过程中,抽水井水位下降,在水井周围形成地下水位降落漏斗,使周围地下水不断流向抽水井,减少了污染扩散和迁移。最后,根据污染场地的实际情况,对处理过的受污染地下水进行排放和综合利用,可以用于景观用水、回灌到地下或用于当地供水等。
抽水处理技术适用范围广,对于污染范围大、污染晕埋藏深的污染场地也适用。但其自身也存在一些局限性:①当非水相溶液出现时,由于毛细张力而滞留的非水相溶液几乎不太可能通过水泵抽水的方法清除;②该技术开挖处理工程费用较高,而且涉及地下水的抽去和回灌,对污染场地干扰大;③需要持续的能量供给,以确保地下水的抽出和水处理系统的运行,同时还要求对抽水系统和处理系统进行定期的维护与监测。
11.3.1.1 抽水系统
抽水的最终目标是合理地设计和布置抽水井,使已受污染的地下水完全抽出来。为了截获地下水污染羽状体,在其下游布置一个或多个抽水井,它们都有水流影响区,称为截获区。截获区包含地下水污染羽状体的整个范围。截获区的形状受地下流速、抽水量及含水层渗透性的影响,截获区范围取决于抽水时间的长短和抽水量的大小,抽水时间越长、抽水量越大,其延伸范围也越大。
截获区的计算方法是假定含水层为一个均质各向同性的等厚承压含水层,地下水流向与X轴平行,但流向为X负方向,抽水井为完整井,抽水井布置在Y轴上。在上述条件下即可推导出计算截获区的水力学方程。
单井截获区的设计计算,假设抽水井位于直角坐标原点,截获区以外的地下水不流向抽水井,截获区边界水力学方程为
变环境条件下的水资源保护与可持续利用研究
式中:Q为抽水井的抽水量,m3/d;B为含水层厚度,m;v为区域地下水渗流速度, m/d。
式中唯一的未知参数是Q/Bv,其量纲为m。随着Q/Bv值的增大,截获区范围也增大。停滞点在抽水井的下游,与抽水井的距离为Q/2πBv。
多井截获区的设计计算,假设当抽水井为四眼或大于四眼时,截获区范围的水力学方程式为
变环境条件下的水资源保护与可持续利用研究
式中:Y1,Y2,…,Yn为抽水井1,2,…,n在Y轴上的位置。
相邻两井间的最优距离约为1.2Q/πBv。
上述方程是在假设均质、等厚、各向同性的承压含水层的基础上推导出来的。实际上,含水层的不均质非各向同性居多。因此,用上述方程计算的结果不可避免地会产生误差,在实际工作中应反复校验并予以校正。对于潜水含水层而言,只要抽水井水位降深与整个含水层相比很小,上述方程计算误差不是很大。
11.3.1.2 处理系统
受污染的地下水抽出后的处理方法与地表水的处理相同。针对本文要处理的重点污染物六价铬,目前常采用的方法有很多,主要有化学还原法、沉淀法、钡盐法、离子交换法、离子交换纤维法、无机材料吸附法、电解法、絮凝沉淀法、吸附法、反渗透膜法等。
⑵ 地下水热泵系统
1.地下水热泵系统的原理、特点
地下水热泵系统工作原理是通过抽取地下水,利用地下水全年温度保持恒定的特点,与主机冷凝器或蒸发器进行热交换,或通过板式换热器与冷凝器产生的高温热水(夏季工作时)或蒸发器产生的低温冷水(冬季运行时)进行热交换,然后将置换冷量或热量的地下水全部回入同一含水层中,工作原理见图3-3。
地下水热泵系统具有最显著的特点是:
(1)在适合打井的地点,开凿一定数量的抽、灌井,通过循环利用地下水,从中吸取或排放热量。
(2)与地埋管换热系统相比,地下水换热系统主要通过热对流方式换热,出水温度稳定。
图3-3地下水热泵系统工作原理图
2.地下水热泵系统的组成和基本情况介绍
地下水热泵系统由地下水换热系统、机房系统和末端系统三部分组成。从专业技术角度上讲,末端系统的设计和施工属于由暖通空调专业;机房系统主要由主机、电气自控系统和水流控制系统组成,其核心是热泵机组技术;地下水换热系统的设计和施工属于水文地质专业,必须由有地质勘察和凿井施工资质的专业部门来完成。因此,地下水地源热泵系统的核心实际上是以单独的暖通空调技术、热泵机组技术和地质勘察技术为支撑的、多学科相互配合和有机组成的综合新型、环保、节能技术。
在我国,暖通空调技术和热泵机组技术已经得到了长时间、广泛的应用,技术已非常成熟。在推广地下水地源热泵技术实践过程中,由于各地区地质和水文地质条件的复杂性和多变性,导致各地区岩(土)层的导热性和水文地质参数差异巨大,在一个地区能成功应用的地下换热系统,在另一地区往往并不适用,即使是在同一地区,也因项目地点位于河道冲洪积扇的上、中、下游的不同,导致项目设计的抽、灌井出水量、回灌量,抽灌井数量比例和深度、布井方案的不同。另外,地下地下水热泵的运行最重要的是不能对区域地质环境产生重要影响,也不能产生相关的次生地质灾害,如地下水交叉污染、地面沉降、地裂缝等。因此,地质勘察技术能否解决浅层地温能资源的提取与地下水资源(地下空间环境)的保护问题是地下水地源热泵技术的核心,也是浅层地温能开发利用工程能否成功应用于实践的关键。
地下水换热系统的设计和施工以地质勘察技术为基础,它是获取浅层地温能的途径,也是地下水地源热泵系统的核心。它由抽水井和回灌井、水泵、水处理设备和连接管线组成。
抽水井和回灌井:可以连续提取和回灌地下水的构(建)筑物。取水构(建)筑物类型包括:管井、筒井(大口径井)、水平集水工程、斜井等。在大多数情况下(除地下水埋藏深度接近于地表的南方部分地区外),取水构(建)筑物也可用做回灌构(建)筑物。
水泵和连接管线是地下水换热系统的运行的必备条件,水泵是地下水换热系统水循环的动能来源,连接管线是水循环的输送途径。
地下水地源热泵与地埋管地源热泵相比,在机房内增加有水处理设施,如旋流除砂器、电子水处理仪等。旋流除砂器是物理水处理设备,须安置在井水进入主机冷凝器或蒸发器之前,目的是滤除井水杂物和降低井水含砂量,其工作原理是根据流体中的固体颗粒在除砂器里旋转时的筛分原理制成,当水流在一定压力下从除砂器进水口以切向进入设备后,产生强烈的旋转运动,由于砂、水密度不同,在离心力的作用下,使密度低的水上升,由出水口排出,密度高的砂粒由设备底部的排污口排出,沿水流上浮的个别微小颗粒可以通过加过滤措施进行第二级过滤装置阻隔,从而达到除砂的目的。安装除砂器一方面是防止主机冷凝器或蒸发器铜管的过度磨损,另一方面是保护回灌井不会较快的被沉淀物堵塞,保证回灌井的长期运行。电子水处理仪是化学水处理设备,它通过释放紫外线杀灭水中微生物和藻类,降低因水温变化带来的微生物数量的增长,避免微生物等在主机冷凝器或蒸发器铜管上的附着,同时也可降低回灌井微生物生长堵塞的风险。
根据地下水是否直接与机组冷凝器或蒸发器直接接触,地下水热泵系统可分为直接换热方式和间接换热方式。其中,直接换热方式是指地下水经处理后直接流经热泵机组进行热交换;间接换热方式是指地下水只进入中间换热器,把热量传递给机组循环水,多用于水质较差或腐蚀性强的地下水分布区。间接地下水换热系统能够避免腐蚀昂贵的主机冷凝器或蒸发器,但同时也存在一定的温度损失。
根据地下水换热系统抽取和回灌地下水的方式不同,系统可以分为同井抽灌和异井抽灌两种模式,其中同井抽灌系统实现在同一眼井中既抽取地下水,又能将换热后的等量地下水全部回灌,这项技术对项目所在地的水文地质条件和成井工艺、施工工艺要求较高,系统工作原理见图3-4。
图3-4同井抽灌系统工作原理图
异井抽灌技术实现抽、灌分离,按抽、灌井的数量不同,可分为一抽一灌、一抽二灌、二抽三灌等多种形式,这种技术适用范围较广,地下水热泵系统原理见图3-3。
地下水热泵系统的取水层绝大多数为第四系孔隙地下水,井深在100m以内,如北京市海淀区海兴大厦、海剑大厦、海淀区人民法院、海淀区人民政府办公楼、北京市地下水动态监测站及办公试验综合楼等项目。少量项目取水层为基岩地下水(岩溶地下水或裂隙地下水),如位于北京市昌平区南口山前的北京人民警察学院地下水热泵项目,服务面积达到18×104tm2,取水井深度350m,取水层为蓟县系雾迷山组岩溶地下水。
3.地下水热泵系统核心技术——地下水换热技术
地下水热泵最显著的特点是:根据建筑物冷热负荷大小确定地下水循环量及当地水文地质条件开凿一定数量的抽、灌井以实现换热后的地下水全部、同层回灌。因此,地下地下水热泵项目能否运行的关键是在一定技术、经济条件下,项目所在区域水文地质条件能否满足项目所需的循环水量。首先就是能否“抽得出、灌得进”;其次是初投资及运行成本是否合理;最后,地下水水质能否满足系统对水质的要求,包括地下水化学成分、浑浊度、硬度、矿化度和腐蚀性等因素。下面以第四系松散层水文地质条件为例,说明水文地质条件对地下水地源热泵项目的影响。
1)含水层的岩性、埋深、厚度
一般来讲,含水层岩性颗粒越大,含水层的渗透能力越强,在其他条件相同的情况下,单井出水量和回灌也越大,见表3-1。因此,相同规模的建筑物在冲洪积扇顶部与下部,抽灌井数量会差得很大。以北京地区为例,在永定河冲洪积扇顶部的石景山地区,含水层岩性以砂卵砾石层为主,渗透系数300~500m/d,单井出水能力超过200m3/h,而位于永定河冲洪积扇下部的通州地区,含水层以中砂、中粗砂为主,渗透系数不足20m/d,单井出水能力一般在60~80m3/h;回灌能力也差距巨大,在永定河冲洪积顶部区域单井回灌能力可以达到出水量的80%以上,甚至达到100%,而在下游地区单井回灌量往往只有出水量的30%左右。
表3-1松散层岩性含水层渗透系数经验值
需要指出的是,尽管岩性颗粒较小的区域抽灌井数量多于岩性颗粒较大的区域,但在岩性颗粒较大地区成井,单井施工难度大,施工成本高于在岩性颗粒较小的地区。因此,整体上在水文地质条件较好的区域初投资小于水文地质条件较差的区域,但不与水井数量呈正比例关系。
含水层埋藏深度越大,会增加抽灌井设计深度,导致项目初投资加大,同时也增大了施工风险和难度。
含水层厚度是影响含水层出水能力的又一重要因素,含水层越薄,甚至被疏干,单井出水量将降低直到水井干涸,导致项目无法运行或影响项目运行的稳定性。以北京地区为例,位于永定河冲洪扇顶部的丰台地区,第四系厚度在30~50m左右,岩性以砂卵砾石层为主,但地下水位埋深在27~28m左右,局部地区含水层厚度不足3m,导致出水能力大幅度下降,部分项目运行稳定性受到影响。
含水层分布范围是也就是地下水地源热泵项目可以分布的范围,如果拟建场地无含水层分布或地下水资源匮乏,不能满足项目的需水要求,则只能寻求采用地埋管地源热泵系统或其他方案。
为了更好的说明区域水文地质条件对地下地下水热泵项目的决定性影响,以北京地区地下水地源热泵项目的分布为例进行说明,从图3-5可以看出,北京地区地下水地源热泵两个密集开发区均位于永定河冲洪积扇中上部,一是海淀区四季青、中关村一带;二是丰台区大红门一带,项目密度达到5个/km2,按每个项目服务面积2×104m2计算,每平方公里地下水地源热泵项目服务面积达10×104m2。另外,平谷盆地、顺义牛栏山、昌平以西、北小营地区、延庆盆地、房山窦店地区等水文地质条件同样优越,但项目数量较少,主要原因是这些地区位于远郊区县、需求不足,是今后重点的潜在开发区。
2)地下水位埋深
地下水位埋深与地下水地源热泵系统能否运行和运行成本密切相关。地下水埋藏较深,一方面增大了打井成本,另一方面也增加了抽水成本,有利的是增加了重力回灌时的水柱压力,有利于地下水回灌;地下水埋藏较浅,可减小抽水井深度,节约抽水成本,但回灌井的回灌效果将大大降低。仍以北京地区永定河冲洪积扇顶部的石景山区某项目为例,该区地下水位埋深在2008年1月已达到53m,较项目设计时下降了18m,这样不仅增大了抽水成本,单井出水量也有所衰减,但回灌能力却大大增强,原设计1抽2灌方案,现实际上1抽1灌就可以满足要求。
图3-5北京市平原区地下水富水性分区图
3)地下水径流条件和抽灌井布置
地下水径流条件包括地下水的流速和流向。地下水径流越强烈越有利于带走热泵机组产生的热量与冷量,越不易产生“热突破”现象,系统运行的COP和EER系数越高,运行成本也越经济。
地下地下水热泵运行时,必然改变地下水的原始流场,在抽水井的周围形成地下水位的降落“漏斗”,在回灌井周围形成水位上升“锥体”。由于“锥体”区水位明显高于“漏斗”区水位,地下水改变原始流向,从“锥体”区流向于“漏斗”区,因此地下水热泵项目运行时,在其影响范围内,增强地下水径流强度,改变了地下水流向。如果地下地下水热泵项目实现了抽、灌水量的等量、同层回灌,其影响范围是有限的,一般不会超过1000m。图3-6、图3-7和图3-8是根据北京海淀某地下水热泵项目原始流场、夏季运行和冬季运行时等水位线图。
地下水温度场也会随着地下水流场的改变而改变。具体地说,随着回灌水在含水层中的缓慢流动,回灌水的温度会逐步与地下水常温趋一致,也就是回灌水在地下含水层中会有一个“温度影响半径”,其大小受到回灌量、回灌温度与地下常温的差值大小、含水层的渗透性和热传导率等因素控制,图3-9、图3-10是根据北京海淀区某地下地下水热泵项目的高峰需水量及项目场区的水文地质参数,如原始地下水流场、渗透系数、导水系数、孔隙度、含水层厚度等,计算出来的项目运行时地下水流“温度影响半径”。
图3-6项目地下水原始流场等水位线图
图3-7项目夏季运行时地下水等水位线图
图3-8项目冬季运行时地下水等水位线图
图3-9项目夏季运行时等温线示意图
如果抽、灌井之间的距离小于“温度影响半径”,将发生“热突破”现象,导致在夏季制冷期,抽水井处的温度将升高,而在冬季供暖期,抽水井处的地下水温度降低,其最终结果会导致地下地下水热泵空调系统的运行效率降低。因此,合理的抽、灌井间距是地下水热泵空调系统高效运行的重要因素。
图3-10项目冬季运行时等温线示意图
抽水井、回灌井的布设原则应是在充分了解当地水文地质条件的基础上结合以下因素共同确定:
(1)工程的开采(回灌)水量;
(2)地下水开采时温度和回灌温度(能量提取大小);
(3)地下含水层的渗透性和空隙率;
(4)地下含水层厚度、地下静、动水位及地下水流场;
(5)地下水及含水层介质的热物理性参数。
目前,利用计算机软件,如HST3D,FEFLOW,MODFLOW,GMS6.0等地下水数值模拟软件,不但可以模拟地下地下水热泵项目运行时的地下水流场,还可以模拟地下水温度场。因此,在项目进行水资源论证阶段,利用地下水数值模拟软件预测项目运行后对现有水源地和现有开采用户的影响,指导项目抽、灌井的合理布局,避免引起“热突破”现象,将可以在一定程度上规避项目上马的技术、经济风险。
4)地下水抽、灌工艺分析
根据地下水换热系统抽取和回灌地下水的方式不同,系统可以分为单井抽灌和异井抽灌两种模式。单井抽灌系统实现在同一眼井中既抽取地下水,又能将换热后的等量地下水全部回灌,系统工作原理见图3-4。异井抽灌技术实现抽、灌分离,按抽、灌井的数量不同,可分为一抽一灌、一抽二灌、二抽三灌等多种形式,工作系统原理图见图3-3。
地下水回灌方式一般采用两种形式:一是重力回灌,通过井内一定的水头高度向含水层内注水;另一种是压力回灌,当井内水满后,通过加大井内压力来增加含水层的注入量。重力回灌必须在井内水位埋深与地表存在一定差异后才可进行,一般情况下近年井内最高水位埋深小于5m时,就不宜考虑采用重力回灌,这种现象容易出现在地下水丰富的南方地区或地下水溢出带上,如成都平原地下水位埋深也就3~5m,在该区采用地下地下水热泵项目回灌方式应因地制宜的采取措施。压力回灌也是有前提条件的,当含水层没有上覆盖层或盖层较薄时,就不能采用压力回灌,否则容易造成地表溢水等次生灾害的发生。
4.地下水换热系统设计和施工技术要求
从地下水取水角度上讲,地下水换热系统设计也就是地下水源地的勘察与评价。需要指出的是,在进行地下水换热系统设计前应根据系统对水量、水温和水质的要求,对工程场区的水文地质条件进行勘察,勘察内容包括:
(1)地下水类型;
(2)含水层岩性、分布、埋深和厚度;
(3)含水层的富水性和渗透性;
(4)地下水径流方向、速度和水力坡度;
(5)地下水水温及其分布;
(6)地下水水质;
(7)地下水位动态变化。
地下水换热系统勘察应进行水文地质试验。试验包括下列内容:
(1)抽水试验;
(2)回灌试验;
(3)测量出水温度;
(4)取分层水样并化验分析分层水质;
(5)水流方向试验;
(6)渗透系数计算。
抽、灌井设计和施工应由专业部门完成。成井技术参数(孔径、井径、滤水管位置、井管材质、滤料粒径、抽水试验等)应由应根据工程所在区域水文地质条件和项目需水量来确定。
为保护地下水换热系统使用寿命,建议抽水井和回灌井最好交叉使用,定期对抽水井和回灌井进行捞砂洗井,定期观测抽水井和回灌井水位,定期采取抽灌井水样进行水质监测,保证地下水环境不受人为污染。
⑶ 现在市面上的什么水处理系统比较好
个人认为市面上水处理系统都差不多没有多好的
⑷ 水处理系统一年的物业维护成本和用电量大概需要多少
污水处理系统么?
一年的设备维护成本大概占设备总价值的5%,这个要看你的管理水平,高低很明显的。
用电量根据处理规模,大概是平均每吨水,耗电0.5-0.8KW/h。规模越大,这个耗电比例越小
⑸ 水处理系统哪个牌子好
您好,水处理系统有很多种类,想问您一下,你要做那种水处理系统啊,这个真是太多太多了,水处理设备要针对不同水质,来分别选择的,需要有水样,然后针对水质来选择水处理设备,这样能够为您节省成本,提高使用质量。好多朋友推荐莱特莱德,您看看吧,谢谢哦
⑹ 电子水处理仪安装说明,哪个品牌好
电子水处理仪,又名电子除垢防垢仪。该设备不需要添加任何化学药物,安装使用非常简单,可广泛用于锅炉、中央空调、换热设备、循环水系统、工业通用水处理设备等,对物理性、生物性、化学性的垢类均有明显的预防和清除效果
⑺ 请教电厂化学水处理系统的主要设备及其工作原理
电厂水处理可以根据机组的装机容量和水质要求区别。最多的可分为四个重要处理过程。江河中取水经过自然沉降或机械沉降、物理吸附等工艺进行初处理为第一步,主要设备有机械搅拌过滤器,机械悬浮过滤器,活性炭过滤器等。第二步为反渗透、超滤、海水淡化、正渗透等工艺进行降低离子含量、导电度等。第三步为离子交换处理,进一步降低水中的各种离子含量,水质达到纯水指标,主要是阴阳离子交换器,混合离子交换器等。
第四步炉内增加混合离子交换器主要是针对炉内水质净化。一般小机组可能没有。
⑻ 水处理系统有哪些
您的问题问的他泛了,现在的水处理系统都是按照废水的种类来分的,而且时时刻刻都有新的研究成果诞生,没人能说全都有哪些废水处理系统的。我在这里先介绍些废水的种类,更详细的您可以网络上查询。
废水大体分为三个类别:
第一种是按工业企业的产品和加工对象分类,如金属冶炼废水、造纸废水、制革废水、金属酸洗废水、喷漆废水、炼焦煤气废水、化学肥料废水、纺织印染废水、印染废水、农药废水、电站废水等。
第二种是按工业废水中所含主要污染物的化学性质分类,含无机污染物为主的为无机废水,含有机污染物为主的为有机废水。例如电镀废水和矿物加工过程的废水,是无机废水;食品或石油加工过程的废水,是有机废水。
第三种是按废水中所含污染物的主要成分分类,如酸性废水、碱性废水、含氰废水、含铬废水、含镉废水、含汞废水、含酚废水、含醛废水、含油废水、含硫废
水、含有机磷废水和放射性废水等。前两种分类法不涉及废水中所含污染物的主要成分,也不能表明废水的危害性。而第三种分类法,明确地指出废水中主要污染物
的成分,能表明废水一定的危害性。
全文您可以看这里:http://tieba..com/p/3898507829